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Abstract

Recent progress in artificial intelligence (AI) has renewed interest in building systems that

learn and think like people. Many advances have come from using deep neural networks trained

end-to-end in tasks such as object recognition, video games, and board games, achieving perfor-

mance that equals or even beats humans in some respects. Despite their biological inspiration

and performance achievements, these systems differ from human intelligence in crucial ways.

We review progress in cognitive science suggesting that truly human-like learning and thinking

machines will have to reach beyond current engineering trends in both what they learn, and how

they learn it. Specifically, we argue that these machines should (a) build causal models of the

world that support explanation and understanding, rather than merely solving pattern recog-

nition problems; (b) ground learning in intuitive theories of physics and psychology, to support

and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn

to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete

challenges and promising routes towards these goals that can combine the strengths of recent

neural network advances with more structured cognitive models.
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1 Introduction

Artificial intelligence (AI) has been a story of booms and busts, yet by any traditional measure of

success, the last few years have been marked by exceptional progress. Much of this progress has

come from recent advances in “deep learning,” characterized by learning large neural-network-style

models with multiple layers of representation. These models have achieved remarkable gains in

many domains spanning object recognition, speech recognition, and control (LeCun, Bengio, &

Hinton, 2015; Schmidhuber, 2015). In object recognition, Krizhevsky, Sutskever, and Hinton

(2012) trained a deep convolutional neural network (convnets; LeCun et al., 1989) that nearly

halved the error rate of the previous state-of-the-art on the most challenging benchmark to date.

In the years since, convnets continue to dominate, recently approaching human-level performance

on some object recognition benchmarks (He, Zhang, Ren, & Sun, 2015; Russakovsky et al., 2015;

Szegedy et al., 2014). In automatic speech recognition, Hidden Markov Models (HMMs) have

been the leading approach since the late 1980s (Juang & Rabiner, 1990), yet this framework

has been chipped away piece by piece and replaced with deep learning components (Hinton et al.,

2012). Now, the leading approaches to speech recognition are fully neural network systems (Graves,

Mohamed, & Hinton, 2013; Weng, Yu, Watanabe, & Juang, 2014). Ideas from deep learning have

also been applied to learning complex control problems. V. Mnih et al. (2015) combined ideas from

deep learning and reinforcement learning to make a “deep reinforcement learning” algorithm that

learns to play large classes of simple video games from just frames of pixels and the game score,

achieving human or superhuman level performance on many of these games (see also Guo, Singh,

Lee, Lewis, & Wang, 2014; Schaul, Quan, Antonoglou, & Silver, 2016; Stadie, Levine, & Abbeel,

2016).

These accomplishments have helped neural networks regain their status as a leading paradigm in

machine learning, much as they were in the late 1980s and early 1990s. The recent success of

neural networks has captured attention beyond academia. In industry, companies such as Google

and Facebook have active research divisions exploring these technologies, and object and speech

recognition systems based on deep learning have been deployed in core products on smart phones
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and the web. The media has also covered many of the recent achievements of neural networks,

often expressing the view that neural networks have achieved this recent success by virtue of their

brain-like computation and thus their ability to emulate human learning and human cognition.

In this article, we view this excitement as an opportunity to examine what it means for a machine

to learn or think like a person. We first review some of the criteria previously offered by cognitive

scientists, developmental psychologists, and AI researchers. Second, we articulate what we view as

the essential ingredients for building such a machine that learns or thinks like a person, synthesizing

theoretical ideas and experimental data from research in cognitive science. Third, we consider

contemporary AI (and deep learning in particular) in light of these ingredients, finding that deep

learning models have yet to incorporate many of them and so may be solving some problems in

different ways than people do. We end by discussing what we view as the most plausible paths

towards building machines that learn and think like people. This includes prospects for integrating

deep learning with the core cognitive ingredients we identify, inspired in part by recent work fusing

neural networks with lower-level building blocks from classic psychology and computer science

(attention, working memory, stacks, queues) that have traditionally been seen as incompatible.

Beyond the specific ingredients in our proposal, we draw a broader distinction between two differ-

ent computational approaches to intelligence. The statistical pattern recognition approach treats

prediction as primary, usually in the context of a specific classification, regression, or control task.

In this view, learning is about discovering features that have high value states in common – a

shared label in a classification setting or a shared value in a reinforcement learning setting – across

a large, diverse set of training data. The alternative approach treats models of the world as pri-

mary, where learning is the process of model-building. Cognition is about using these models to

understand the world, to explain what we see, to imagine what could have happened that didn’t,

or what could be true that isn’t, and then planning actions to make it so. The difference be-

tween pattern recognition and model-building, between prediction and explanation, is central to

our view of human intelligence. Just as scientists seek to explain nature, not simply predict it, we

see human thought as fundamentally a model-building activity. We elaborate this key point with
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numerous examples below. We also discuss how pattern recognition, even if it is not the core of

intelligence, can nonetheless support model-building, through “model-free” algorithms that learn

through experience how to make essential inferences more computationally efficient.

Before proceeding, we provide a few caveats about the goals of this article and a brief overview of

the key ideas.

1.1 What this article is not

For nearly as long as there have been neural networks, there have been critiques of neural networks

(Crick, 1989; Fodor & Pylyshyn, 1988; Marcus, 1998, 2001; Minsky & Papert, 1969; Pinker

& Prince, 1988). While we are critical of neural networks in this article, our goal is to build

on their successes rather than dwell on their shortcomings. We see a role for neural networks in

developing more human-like learning machines: They have been applied in compelling ways to

many types of machine learning problems, demonstrating the power of gradient-based learning and

deep hierarchies of latent variables. Neural networks also have a rich history as computational

models of cognition (McClelland, Rumelhart, & the PDP Research Group, 1986; Rumelhart,

McClelland, & the PDP Research Group, 1986) – a history we describe in more detail in the next

section. At a more fundamental level, any computational model of learning must ultimately be

grounded in the brain’s biological neural networks.

We also believe that future generations of neural networks will look very different from the current

state-of-the-art. They may be endowed with intuitive physics, theory of mind, causal reasoning,

and other capacities we describe in the sections that follow. More structure and inductive biases

could be built into the networks or learned from previous experience with related tasks, leading to

more human-like patterns of learning and development. Networks may learn to effectively search

for and discover new mental models or intuitive theories, and these improved models will, in turn,

enable subsequent learning, allowing systems that learn-to-learn – using previous knowledge to

make richer inferences from very small amounts of training data.
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Table 1: Glossary

Neural network: A network of simple neuron-like processing units that collectively per-
form complex computations. Neural networks are often organized into layers, including an
input layer that presents the data (e.g, an image), hidden layers that transform the data
into intermediate representations, and an output layer that produces a response (e.g., a
label or an action). Recurrent connections are also popular when processing sequential
data.
Deep learning: A neural network with at least one hidden layer (some networks have
dozens). Most state-of-the-art deep networks are trained using the backpropagation algo-
rithm to gradually adjust their connection strengths.
Backpropagation: Gradient descent applied to training a deep neural network. The
gradient of the objective function (e.g., classification error or log-likelihood) with respect
to the model parameters (e.g., connection weights) is used to make a series of small
adjustments to the parameters in a direction that improves the objective function.
Convolutional network (convnet): A neural network that uses trainable filters instead
of (or in addition to) fully-connected layers with independent weights. The same filter is
applied at many locations across an image (or across a time series), leading to neural
networks that are effectively larger but with local connectivity and fewer free parameters.
Model-free and model-based reinforcement learning: Model-free algorithms di-
rectly learn a control policy without explicitly building a model of the environment (re-
ward and state transition distributions). Model-based algorithms learn a model of the
environment and use it to select actions by planning.
Deep Q-learning: A model-free reinforcement learning algorithm used to train deep
neural networks on control tasks such as playing Atari games. A network is trained to
approximate the optimal action-value function Q(s, a), which is the expected long-term
cumulative reward of taking action a in state s and then optimally selecting future actions.
Generative model: A model that specifies a probability distribution over the data. For
instance, in a classification task with examples X and class labels y, a generative model
specifies the distribution of data given labels P (X|y), as well as a prior on labels P (y),
which can be used for sampling new examples or for classification by using Bayes’ rule to
compute P (y|X). A discriminative model specifies P (y|X) directly, possibly by using a
neural network to predict the label for a given data point, and cannot directly be used to
sample new examples or to compute other queries regarding the data. We will generally
be concerned with directed generative models (such as Bayesian networks or probabilistic
programs) which can be given a causal interpretation, although undirected (non-causal)
generative models (such as Boltzmann machines) are also possible.
Program induction: Constructing a program that computes some desired function,
where that function is typically specified by training data consisting of example input-
output pairs. In the case of probabilistic programs, which specify candidate generative
models for data, an abstract description language is used to define a set of allowable
programs and learning is a search for the programs likely to have generated the data.
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It is also important to draw a distinction between AI that purports to emulate or draw inspiration

from aspects of human cognition, and AI that does not. This article focuses on the former. The

latter is a perfectly reasonable and useful approach to developing AI algorithms – avoiding cognitive

or neural inspiration as well as claims of cognitive or neural plausibility. Indeed, this is how many

researchers have proceeded, and this article has little pertinence to work conducted under this

research strategy.1 On the other hand, we believe that reverse engineering human intelligence can

usefully inform AI and machine learning (and has already done so), especially for the types of

domains and tasks that people excel at. Despite recent computational achievements, people are

better than machines at solving a range of difficult computational problems, including concept

learning, scene understanding, language acquisition, language understanding, speech recognition,

etc. Other human cognitive abilities remain difficult to understand computationally, including

creativity, common sense, and general purpose reasoning. As long as natural intelligence remains

the best example of intelligence, we believe that the project of reverse engineering the human

solutions to difficult computational problems will continue to inform and advance AI.

Finally, while we focus on neural network approaches to AI, we do not wish to give the impres-

sion that these are the only contributors to recent advances in AI. On the contrary, some of the

most exciting recent progress has been in new forms of probabilistic machine learning (Ghahra-

mani, 2015). For example, researchers have developed automated statistical reasoning techniques

(Lloyd, Duvenaud, Grosse, Tenenbaum, & Ghahramani, 2014), automated techniques for model

building and selection (Grosse, Salakhutdinov, Freeman, & Tenenbaum, 2012), and probabilistic

programming languages (e.g., Gelman, Lee, & Guo, 2015; Goodman, Mansinghka, Roy, Bonawitz,

& Tenenbaum, 2008; Mansinghka, Selsam, & Perov, 2014). We believe that these approaches will

play important roles in future AI systems, and they are at least as compatible with the ideas from

cognitive science we discuss here, but a full discussion of those connections is beyond the scope of

the current article.

1In their influential textbook, Russell and Norvig (2003) state that “The quest for ‘artificial flight’ succeeded
when the Wright brothers and others stopped imitating birds and started using wind tunnels and learning about
aerodynamics.” (p. 3).
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1.2 Overview of the key ideas

The central goal of this paper is to propose a set of core ingredients for building more human-like

learning and thinking machines. We will elaborate on each of these ingredients and topics in Section

4, but here we briefly overview the key ideas.

The first set of ingredients focuses on developmental “start-up software,” or cognitive capabilities

present early in development. There are several reasons for this focus on development. If an

ingredient is present early in development, it is certainly active and available well before a child or

adult would attempt to learn the types of tasks discussed in this paper. This is true regardless of

whether the early-present ingredient is itself learned from experience or innately present. Also, the

earlier an ingredient is present, the more likely it is to be foundational to later development and

learning.

We focus on two pieces of developmental start-up software (see Wellman & Gelman, 1992, for a

review of both). First is intuitive physics (Section 4.1.1): Infants have primitive object concepts

that allow them to track objects over time and allow them to discount physically implausible

trajectories. For example, infants know that objects will persist over time and that they are solid

and coherent. Equipped with these general principles, people can learn more quickly and make

more accurate predictions. While a task may be new, physics still works the same way. A second

type of software present in early development is intuitive psychology (Section 4.1.2): Infants

understand that other people have mental states like goals and beliefs, and this understanding

strongly constrains their learning and predictions. A child watching an expert play a new video

game can infer that the avatar has agency and is trying to seek reward while avoiding punishment.

This inference immediately constrains other inferences, allowing the child to infer what objects are

good and what objects are bad. These types of inferences further accelerate the learning of new

tasks.

Our second set of ingredients focus on learning. While there are many perspectives on learning, we

see model building as the hallmark of human-level learning, or explaining observed data through
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the construction of causal models of the world (Section 4.2.2). Under this perspective, the early-

present capacities for intuitive physics and psychology are also causal models of the world. A

primary job of learning is to extend and enrich these models, and to build analogous causally

structured theories of other domains.

Compared to state-of-the-art algorithms in machine learning, human learning is distinguished by its

richness and its efficiency. Children come with the ability and the desire to uncover the underlying

causes of sparsely observed events and to use that knowledge to go far beyond the paucity of the

data. It might seem paradoxical that people are capable of learning these richly structured models

from very limited amounts of experience. We suggest that compositionality and learning-to-

learn are ingredients that make this type of rapid model learning possible (Sections 4.2.1 and 4.2.3,

respectively).

A final set of ingredients concerns how the rich models our minds build are put into action, in real

time (Section 4.3). It is remarkable how fast we are to perceive and to act. People can comprehend

a novel scene in a fraction of a second, and or a novel utterance in little more than the time it

takes to say it and hear it. An important motivation for using neural networks in machine vision

and speech systems is to respond as quickly as the brain does. Although neural networks are

usually aiming at pattern recognition rather than model-building, we will discuss ways in which

these “model-free” methods can accelerate slow model-based inferences in perception and cognition

(Section 4.3.1). By learning to recognize patterns in these inferences, the outputs of inference can

be predicted without having to go through costly intermediate steps. Integrating neural networks

that “learn to do inference” with rich model-building learning mechanisms offers a promising way

to explain how human minds can understand the world so well, so quickly.

We will also discuss the integration of model-based and model-free methods in reinforcement learn-

ing (Section 4.3.2), an area that has seen rapid recent progress. Once a causal model of a task has

been learned, humans can use the model to plan action sequences that maximize future reward;

when rewards are used as the metric for successs in model-building, this is known as model-based

reinforcement learning. However, planning in complex models is cumbersome and slow, making
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the speed-accuracy trade-off unfavorable for real-time control. By contrast, model-free reinforce-

ment learning algorithms, such as current instantiations of deep reinforcement learning, support

fast control but at the cost of inflexibility and possibly accuracy. We will review evidence that

humans combine model-based and model-free learning algorithms both competitively and cooper-

atively, and that these interactions are supervised by metacognitive processes. The sophistication

of human-like reinforcement learning has yet to be realized in AI systems, but this is an area where

crosstalk between cognitive and engineering approaches is especially promising.

2 Cognitive and neural inspiration in artificial intelligence

The questions of whether and how AI should relate to human cognitive psychology are older than

the terms ‘artificial intelligence’ and ‘cognitive psychology.’ Alan Turing suspected that it is easier

to build and educate a child-machine than try to fully capture adult human cognition (Turing,

1950). Turing pictured the child’s mind as a notebook with “rather little mechanism and lots of

blank sheets,” and the mind of a child-machine as filling in the notebook by responding to rewards

and punishments, similar to reinforcement learning. This view on representation and learning

echoes behaviorism, a dominant psychological tradition in Turing’s time. It also echoes the strong

empiricism of modern connectionist models, the idea that we can learn almost everything we know

from the statistical patterns of sensory inputs.

Cognitive science repudiated the over-simplified behaviorist view and came to play a central role

in early AI research (Boden, 2006). Newell and Simon (1961) developed their “General Problem

Solver” as both an AI algorithm and a model of human problem solving, which they subsequently

tested experimentally (Newell & Simon, 1972). AI pioneers in other areas of research explicitly

referenced human cognition, and even published papers in cognitive psychology journals (e.g.,

Bobrow & Winograd, 1977; Hayes-Roth & Hayes-Roth, 1979; Winograd, 1972). For example,

Schank (1972), writing in the journal Cognitive Psychology, declared that

We hope to be able to build a program that can learn, as a child does, how to do what
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we have described in this paper instead of being spoon-fed the tremendous information

necessary.

A similar sentiment was expressed by Minsky (1974):

I draw no boundary between a theory of human thinking and a scheme for making an

intelligent machine; no purpose would be served by separating these today since neither

domain has theories good enough to explain—or to produce—enough mental capacity.

Much of this research assumed that human knowledge representation is symbolic and that reasoning,

language, planning and vision could be understood in terms of symbolic operations. Parallel to

these developments, a radically different approach was being explored, based on neuron-like “sub-

symbolic” computations (e.g., Fukushima, 1980; Grossberg, 1976; Rosenblatt, 1958). The

representations and algorithms used by this approach were more directly inspired by neuroscience

than by cognitive psychology, although ultimately it would flower into an influential school of

thought about the nature of cognition—parallel distributed processing (PDP) (McClelland et al.,

1986; Rumelhart, McClelland, & the PDP Research Group, 1986). As its name suggests, PDP

emphasizes parallel computation by combining simple units to collectively implement sophisticated

computations. The knowledge learned by these neural networks is thus distributed across the

collection of units rather than localized as in most symbolic data structures. The resurgence of

recent interest in neural networks, more commonly referred to as “deep learning,” share the same

representational commitments and often even the same learning algorithms as the earlier PDP

models. “Deep” refers to the fact that more powerful models can be built by composing many

layers of representation (see LeCun et al., 2015; Schmidhuber, 2015, for recent reviews), still very

much in the PDP style while utilizing recent advances in hardware and computing capabilities, as

well as massive datasets, to learn deeper models.

It is also important to clarify that the PDP perspective is compatible with “model building” in

addition to “pattern recognition.” Some of the original work done under the banner of PDP

(Rumelhart, McClelland, & the PDP Research Group, 1986) is closer to model building than
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pattern recognition, whereas the recent large-scale discriminative deep learning systems more purely

exemplify pattern recognition (see Bottou, 2014, for a related discussion). But, as discussed,

there is also a question of the nature of the learned representations within the model – their form,

compositionality, and transferability – and the developmental start-up software that was used to

get there. We focus on these issues in this paper.

Neural network models and the PDP approach offer a view of the mind (and intelligence more

broadly) that is sub-symbolic and often populated with minimal constraints and inductive biases

to guide learning. Proponents of this approach maintain that many classic types of structured

knowledge, such as graphs, grammars, rules, objects, structural descriptions, programs, etc. can be

useful yet misleading metaphors for characterizing thought. These structures are more epiphenom-

enal than real, emergent properties of more fundamental sub-symbolic cognitive processes (McClel-

land et al., 2010). Compared to other paradigms for studying cognition, this position on the nature

of representation is often accompanied by a relatively “blank slate” vision of initial knowledge and

representation, much like Turing’s blank notebook.

When attempting to understand a particular cognitive ability or phenomenon within this paradigm,

a common scientific strategy is to train a relatively generic neural network to perform the task,

adding additional ingredients only when necessary. This approach has shown that neural networks

can behave as if they learned explicitly structured knowledge, such as a rule for producing the past

tense of words (Rumelhart & McClelland, 1986), rules for solving simple balance-beam physics

problems (McClelland, 1988), or a tree to represent types of living things (plants and animals) and

their distribution of properties (Rogers & McClelland, 2004). Training large-scale relatively generic

networks is also the best current approach for object recognition (He et al., 2015; Krizhevsky et al.,

2012; Russakovsky et al., 2015; Szegedy et al., 2014), where the high-level feature representations

of these convolutional nets have also been used to predict patterns of neural response in human and

macaque IT cortex (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2015; Yamins et al.,

2014) as well as human typicality ratings (Lake, Zaremba, Fergus, & Gureckis, 2015) and similarity

ratings (Peterson, Abbott, & Griffiths, 2016) for images of common objects. Moreover, researchers
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have trained generic networks to perform structured and even strategic tasks, such as the recent

work on using a Deep Q-learning Network (DQN) to play simple video games (V. Mnih et al., 2015).

If neural networks have such broad application in machine vision, language, and control, and if they

can be trained to emulate the rule-like and structured behaviors that characterize cognition, do

we need more to develop truly human-like learning and thinking machines? How far can relatively

generic neural networks bring us towards this goal?

3 Challenges for building more human-like machines

While cognitive science has not yet converged on a single account of the mind or intelligence, the

claim that a mind is a collection of general purpose neural networks with few initial constraints is

rather extreme in contemporary cognitive science. A different picture has emerged that highlights

the importance of early inductive biases, including core concepts such as number, space, agency and

objects, as well as powerful learning algorithms that rely on prior knowledge to extract knowledge

from small amounts of training data. This knowledge is often richly organized and theory-like

in structure, capable of the graded inferences and productive capacities characteristic of human

thought.

Here we present two challenge problems for machine learning and AI: learning simple visual concepts

(Lake, Salakhutdinov, & Tenenbaum, 2015) and learning to play the Atari game Frostbite (V. Mnih

et al., 2015). We also use the problems as running examples to illustrate the importance of core

cognitive ingredients in the sections that follow.

3.1 The Characters Challenge

The first challenge concerns handwritten character recognition, a classic problem for comparing

different types of machine learning algorithms. Hofstadter (1985) argued that the problem of

recognizing characters in all the ways people do – both handwritten and printed – contains most

if not all of the fundamental challenges of AI. Whether or not this statement is right, it highlights
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the surprising complexity that underlies even “simple” human-level concepts like letters. More

practically, handwritten character recognition is a real problem that children and adults must learn

to solve, with practical applications ranging from reading envelope addresses or checks in an ATM

machine. Handwritten character recognition is also simpler than more general forms of object

recognition – the object of interest is two-dimensional, separated from the background, and usually

unoccluded. Compared to how people learn and see other types of objects, it seems possible, in the

near term, to build algorithms that can see most of the structure in characters that people can see.

The standard benchmark is the MNIST data set for digit recognition, which involves classifying

images of digits into the categories ‘0’-‘9’ (LeCun, Bottou, Bengio, & Haffner, 1998). The training

set provides 6,000 images per class for a total of 60,000 training images. With a large amount

of training data available, many algorithms achieve respectable performance, including K-nearest

neighbors (5% test error), support vector machines (about 1% test error), and convolutional neu-

ral networks (below 1% test error; LeCun et al., 1998). The best results achieved using deep

convolutional nets are very close to human-level performance at an error rate of 0.2% (Ciresan,

Meier, & Schmidhuber, 2012). Similarly, recent results applying convolutional nets to the far more

challenging ImageNet object recognition benchmark have shown that human-level performance is

within reach on that data set as well (Russakovsky et al., 2015).

While humans and neural networks may perform equally well on the MNIST digit recognition task

and other large-scale image classification tasks, it does not mean that they learn and think in the

same way. There are at least two important differences: people learn from fewer examples and

they learn richer representations, a comparison true for both learning handwritten characters as

well as learning more general classes of objects (Figure 1). People can learn to recognize a new

handwritten character from a single example (Figure 1A-i), allowing them to discriminate between

novel instances drawn by other people and similar looking non-instances (Lake, Salakhutdinov, &

Tenenbaum, 2015; E. G. Miller, Matsakis, & Viola, 2000). Moreover, people learn more than

how to do pattern recognition: they learn a concept – that is, a model of the class that allows their

acquired knowledge to be flexibly applied in new ways. In addition to recognizing new examples,
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A B

Figure 1: The characters challenge: human-level learning of a novel handwritten characters (A),
with the same abilities also illustrated for a novel two-wheeled vehicle (B). A single example of a
new visual concept (red box) can be enough information to support the (i) classification of new
examples, (ii) generation of new examples, (iii) parsing an object into parts and relations, and
(iv) generation of new concepts from related concepts. Adapted from Lake, Salakhutdinov, and
Tenenbaum (2015).

people can also generate new examples (Figure 1A-ii), parse a character into its most important

parts and relations (Figure 1A-iii; Lake, Salakhutdinov, and Tenenbaum (2012)), and generate new

characters given a small set of related characters (Figure 1A-iv). These additional abilities come

for free along with the acquisition of the underlying concept.

Even for these simple visual concepts, people are still better and more sophisticated learners than

the best algorithms for character recognition. People learn a lot more from a lot less, and cap-

turing these human-level learning abilities in machines is the Characters Challenge. We recently

reported progress on this challenge using probabilistic program induction (Lake, Salakhutdinov,

& Tenenbaum, 2015), yet aspects of the full human cognitive ability remain out of reach. While

both people and model represent characters as a sequence of pen strokes and relations, people have

a far richer repertoire of structural relations between strokes. Furthermore, people can efficiently

integrate across multiple examples of a character to infer which have optional elements, such as

the horizontal cross-bar in ‘7’s, combining different variants of the same character into a single co-
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herent representation. Additional progress may come by combining deep learning and probabilistic

program induction to tackle even richer versions of the Characters Challenge.

3.2 The Frostbite Challenge

The second challenge concerns the Atari game Frostbite (Figure 2), which was one of the control

problems tackled by the DQN of V. Mnih et al. (2015). The DQN was a significant advance

in reinforcement learning, showing that a single algorithm can learn to play a wide variety of

complex tasks. The network was trained to play 49 classic Atari games, proposed as a test domain

for reinforcement learning (Bellemare, Naddaf, Veness, & Bowling, 2013), impressively achieving

human-level performance or above on 29 of the games. It did, however, have particular trouble

with Frostbite and other games that required temporally extended planning strategies.

In Frostbite, players control an agent (Frostbite Bailey) tasked with constructing an igloo within a

time limit. The igloo is built piece-by-piece as the agent jumps on ice floes in water (Figure 2A-C).

The challenge is that the ice floes are in constant motion (moving either left or right), and ice floes

only contribute to the construction of the igloo if they are visited in an active state (white rather

than blue). The agent may also earn extra points by gathering fish while avoiding a number of

fatal hazards (falling in the water, snow geese, polar bears, etc.). Success in this game requires a

temporally extended plan to ensure the agent can accomplish a sub-goal (such as reaching an ice

floe) and then safely proceed to the next sub-goal. Ultimately, once all of the pieces of the igloo

are in place, the agent must proceed to the igloo and thus complete the level before time expires

(Figure 2C).

The DQN learns to play Frostbite and other Atari games by combining a powerful pattern recognizer

(a deep convolutional neural network) and a simple model-free reinforcement learning algorithm

(Q-learning; Watkins & Dayan, 1992). These components allow the network to map sensory inputs

(frames of pixels) onto a policy over a small set of actions, and both the mapping and the policy

are trained to optimize long-term cumulative reward (the game score). The network embodies the

strongly empiricist approach characteristic of most connectionist models: very little is built into
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A B

C D

Figure 2: Screenshots of Frostbite, a 1983 video game designed for the Atari game console. A) The
start of a level in Frostbite. The agent must construct an igloo by hopping between ice floes and
avoiding obstacles such as birds. The floes are in constant motion (either left or right), making
multi-step planning essential to success. B) The agent receives pieces of the igloo (top right) by
jumping on the active ice floes (white), which then deactivates them (blue). C) At the end of a
level, the agent must safely reach the completed igloo. D) Later levels include additional rewards
(fish) and deadly obstacles (crabs, clams, and bears).
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the network apart from the assumptions about image structure inherent in convolutional networks,

so the network has to essentially learn a visual and conceptual system from scratch for each new

game. In V. Mnih et al. (2015), the network architecture and hyper-parameters were fixed, but

the network was trained anew for each game, meaning the visual system and the policy are highly

specialized for the games it was trained on. More recent work has shown how these game-specific

networks can share visual features (Rusu et al., 2016) or be used to train a multi-task network

(Parisotto, Ba, & Salakhutdinov, 2016), achieving modest benefits of transfer when learning to

play new games.

Although it is interesting that the DQN learns to play games at human-level performance while

assuming very little prior knowledge, the DQN may be learning to play Frostbite and other games

in a very different way than people do. One way to examine the differences is by considering the

amount of experience required for learning. In V. Mnih et al. (2015), the DQN was compared with a

professional gamer who received approximately two hours of practice on each of the 49 Atari games

(although he or she likely had prior experience with some of the games). The DQN was trained on

200 million frames from each of the games, which equates to approximately 924 hours of game time

(about 38 days), or almost 500 times as much experience as the human received.2 Additionally, the

DQN incorporates experience replay, where each of these frames is replayed approximately 8 more

times on average over the course of learning.

With the full 924 hours of unique experience and additional replay, the DQN achieved less than

10% of human-level performance during a controlled test session (see DQN in Fig. 3). More recent

variants of the DQN have demonstrated superior performance (Schaul et al., 2016; Stadie et al.,

2016; van Hasselt, Guez, & Silver, 2016; Wang et al., 2016), reaching 83% of the professional

gamer’s score by incorporating smarter experience replay (Schaul et al., 2016) and 96% by using

smarter replay and more efficient parameter sharing (Wang et al., 2016) (see DQN+ and DQN++

in Fig. 3).3 But they requires a lot of experience to reach this level: the learning curve provided

2The time required to train the DQN (compute time) is not the same as the game (experience) time. Compute
time can be longer.

3The reported scores use the “human starts” measure of test performance, designed to prevent networks from just
memorizing long sequences of successful actions from a single starting point. Both faster learning (Blundell et al.,
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in Schaul et al. (2016) shows performance is around 46% after 231 hours, 19% after 116 hours, and

below 3.5% after just 2 hours (which is close to random play, approximately 1.5%). The differences

between the human and machine learning curves suggest that they may be learning different kinds

of knowledge, using different learning mechanisms, or both.

The contrast becomes even more dramatic if we look at the very earliest stages of learning. While

both the original DQN and these more recent variants require multiple hours of experience to

perform reliably better than random play, even non-professional humans can grasp the basics

of the game after just a few minutes of play. We speculate that people do this by inferring a

general schema to describe the goals of the game and the object types and their interactions,

using the kinds of intuitive theories, model-building abilities and model-based planning mecha-

nisms we describe below. While novice players may make some mistakes, such as inferring that

fish are harmful rather than helpful, they can learn to play better than chance within a few min-

utes. If humans are able to first watch an expert playing for a few minutes, they can learn even

faster. In informal experiments with two of the authors playing Frostbite on a Javascript emu-

lator (http://www.virtualatari.org/soft.php?soft=Frostbite), after watching videos of expert play

on YouTube for just two minutes, we found that we were able to reach scores comparable to or

better than the human expert reported in V. Mnih et al. (2015) after at most 15-20 minutes of

total practice.4

There are other behavioral signatures that suggest fundamental differences in representation and

learning between people and the DQN. For instance, the game of Frostbite provides incremental

rewards for reaching each active ice floe, providing the DQN with the relevant sub-goals for com-

pleting the larger task of building an igloo. Without these sub-goals, the DQN would have to take

random actions until it accidentally builds an igloo and is rewarded for completing the entire level.

2016) and higher scores (Wang et al., 2016) have been reported using other metrics, but it is unclear how well the
networks are generalizing with these alternative metrics.

4More precisely, the human expert in V. Mnih et al. (2015) scored an average of 4335 points across 30 game
sessions of up to five minutes of play. In individual sessions lasting no longer than five minutes, author TDU obtained
scores of 3520 points after approximately 5 minutes of gameplay, 3510 points after 10 minutes, and 7810 points after
15 minutes. Author JBT obtained 4060 after approximately 5 minutes of gameplay, 4920 after 10-15 minutes, and
6710 after no more than 20 minutes. TDU and JBT each watched approximately two minutes of expert play on
YouTube (e.g., https://www.youtube.com/watch?v=ZpUFztf9Fjc, but there are many similar examples that can be
found in a YouTube search).
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Figure 3: Comparing learning speed for people versus Deep Q-Networks (DQNs). Test performance
on the Atari 2600 game “Frostbite” is plotted as a function of game experience (in hours at a frame
rate of 60 fps), which does not include additional experience replay. Learning curves (if available)
and scores are shown from different networks: DQN (V. Mnih et al., 2015), DQN+ (Schaul et
al., 2016), and DQN++ (Wang et al., 2016). Random play achieves a score of 66.4. The “human
starts” performance measure is used (van Hasselt et al., 2016).

In contrast, people likely do not rely on incremental scoring in the same way when figuring out

how to play a new game. In Frostbite, it is possible to figure out the higher-level goal of building

an igloo without incremental feedback; similarly, sparse feedback is a source of difficulty in other

Atari 2600 games such as Montezuma’s Revenge where people substantially outperform current

DQN approaches.

The learned DQN network is also rather inflexible to changes in its inputs and goals: changing

the color or appearance of objects or changing the goals of the network would have devastating

consequences on performance if the network is not retrained. While any specific model is necessarily

simplified and should not be held to the standard of general human intelligence, the contrast

between DQN and human flexibility is striking nonetheless. For example, imagine you are tasked

with playing Frostbite with any one of these new goals:

• Get the lowest possible score.

• Get closest to 100, or 300, or 1000, or 3000, or any level, without going over.
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• Beat your friend, who’s playing next to you, but just barely, not by too much, so as not to

embarrass them.

• Go as long as you can without dying.

• Die as quickly as you can.

• Pass each level at the last possible minute, right before the temperature timer hits zero and

you die (i.e., come as close as you can to dying from frostbite without actually dying).

• Get to the furthest unexplored level without regard for your score.

• See if you can discover secret Easter eggs.

• Get as many fish as you can.

• Touch all the individual ice floes on screen once and only once.

• Teach your friend how to play as efficiently as possible.

This range of goals highlights an essential component of human intelligence: people can learn

models and use them for arbitrary new tasks and goals. While neural networks can learn multiple

mappings or tasks with the same set of stimuli – adapting their outputs depending on a specified

goal – these models require substantial training or reconfiguration to add new tasks (e.g., Collins

& Frank, 2013; Eliasmith et al., 2012; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005). In

contrast, people require little or no retraining or reconfiguration, adding new tasks and goals to

their repertoire with relative ease.

The Frostbite example is a particularly telling contrast when compared with human play. Even the

best deep networks learn gradually over many thousands of game episodes, take a long time to reach

good performance and are locked into particular input and goal patterns. Humans, after playing

just a small number of games over a span of minutes, can understand the game and its goals well

enough to perform better than deep networks do after almost a thousand hours of experience. Even

more impressively, people understand enough to invent or accept new goals, generalize over changes
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to the input, and explain the game to others. Why are people different? What core ingredients of

human intelligence might the DQN and other modern machine learning methods be missing?

One might object that both the Frostbite and Characters challenges draw an unfair comparison

between the speed of human learning and neural network learning. We discuss this objection in

detail in Section 5, but we feel it is important to anticipate here as well. To paraphrase one

reviewer of an earlier draft of this article, “It is not that DQN and people are solving the same task

differently. They may be better seen as solving different tasks. Human learners – unlike DQN and

many other deep learning systems – approach new problems armed with extensive prior experience.

The human is encountering one in a years-long string of problems, with rich overlapping structure.

Humans as a result often have important domain-specific knowledge for these tasks, even before

they ‘begin.’ The DQN is starting completely from scratch.” We would not disagree, and indeed

this is another way of putting our point here. Human learners fundamentally take on different

learning tasks than today’s neural networks, and if we want to build machines that learn and think

like people, our machines need to confront the kinds of tasks that human learners do, not shy away

from them. People never start completely from scratch, or even close to “from scratch,” and that

is the secret to their success. The challenge of building models of human learning and thinking

then becomes: How do we bring to bear rich prior knowledge to learn new tasks and solve new

problems so quickly? What form does that prior knowledge take, and how is it constructed, from

some combination of inbuilt capacities and previous experience? The core ingredients we propose

in the next section offer one route to meeting this challenge.

4 Core ingredients of human intelligence

In the Introduction, we laid out what we see as core ingredients of intelligence. Here we consider

the ingredients in detail and contrast them with the current state of neural network modeling.

While these are hardly the only ingredients needed for human-like learning and thought (see our

discussion of language in Section 5), they are key building blocks which are not present in most

current learning-based AI systems – certainly not all present together – and for which additional
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attention may prove especially fruitful. We believe that integrating them will produce significantly

more powerful and more human-like learning and thinking abilities than we currently see in AI

systems.

Before considering each ingredient in detail, it is important to clarify that by “core ingredient” we

do not necessarily mean an ingredient that is innately specified by genetics or must be “built in” to

any learning algorithm. We intend our discussion to be agnostic with regards to the origins of the

key ingredients. By the time a child or an adult is picking up a new character or learning how to

play Frostbite, they are armed with extensive real world experience that deep learning systems do

not benefit from – experience that would be hard to emulate in any general sense. Certainly, the

core ingredients are enriched by this experience, and some may even be a product of the experience

itself. Whether learned, built in, or enriched, the key claim is that these ingredients play an active

and important role in producing human-like learning and thought, in ways contemporary machine

learning has yet to capture.

4.1 Developmental start-up software

Early in development, humans have a foundational understanding of several core domains (Spelke,

2003; Spelke & Kinzler, 2007). These domains include number (numerical and set opera-

tions), space (geometry and navigation), physics (inanimate objects and mechanics) and psychology

(agents and groups). These core domains cleave cognition at its conceptual joints, and each domain

is organized by a set of entities and abstract principles relating the entities. The underlying cogni-

tive representations can be understood as “intuitive theories,” with a causal structure resembling

a scientific theory (Carey, 2004, 2009; Gopnik et al., 2004; Gopnik & Meltzoff, 1999; Gweon,

Tenenbaum, & Schulz, 2010; L. Schulz, 2012; Wellman & Gelman, 1992, 1998). The “child

as scientist” proposal further views the process of learning itself as also scientist-like, with recent

experiments showing that children seek out new data to distinguish between hypotheses, isolate vari-

ables, test causal hypotheses, make use of the data-generating process in drawing conclusions, and

learn selectively from others (Cook, Goodman, & Schulz, 2011; Gweon et al., 2010; L. E. Schulz,
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Gopnik, & Glymour, 2007; Stahl & Feigenson, 2015; Tsividis, Gershman, Tenenbaum, & Schulz,

2013). We will address the nature of learning mechanisms in Section 4.2.

Each core domain has been the target of a great deal of study and analysis, and together the

domains are thought to be shared cross-culturally and partly with non-human animals. All of these

domains may be important augmentations to current machine learning, though below we focus in

particular on the early understanding of objects and agents.

4.1.1 Intuitive physics

Young children have rich knowledge of intuitive physics. Whether learned or innate, important

physical concepts are present at ages far earlier than when a child or adult learns to play Frostbite,

suggesting these resources may be used for solving this and many everyday physics-related tasks.

At the age of 2 months and possibly earlier, human infants expect inanimate objects to follow

principles of persistence, continuity, cohesion and solidity. Young infants believe objects should

move along smooth paths, not wink in and out of existence, not inter-penetrate and not act at a

distance (Spelke, 1990; Spelke, Gutheil, & Van de Walle, 1995). These expectations guide object

segmentation in early infancy, emerging before appearance-based cues such as color, texture, and

perceptual goodness (Spelke, 1990).

These expectations also go on to guide later learning. At around 6 months, infants have already

developed different expectations for rigid bodies, soft bodies and liquids (Rips & Hespos, 2015).

Liquids, for example, are expected to go through barriers, while solid objects cannot (Hespos, Ferry,

& Rips, 2009). By their first birthday, infants have gone through several transitions of compre-

hending basic physical concepts such as inertia, support, containment and collisions (Baillargeon,

2004; Baillargeon, Li, Ng, & Yuan, 2009; Hespos & Baillargeon, 2008).

There is no single agreed-upon computational account of these early physical principles and con-

cepts, and previous suggestions have ranged from decision trees (Baillargeon et al., 2009), to cues,

to lists of rules (Siegler & Chen, 1998). A promising recent approach sees intuitive physical rea-
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soning as similar to inference over a physics software engine, the kind of simulators that power

modern-day animations and games (Bates, Yildirim, Tenenbaum, & Battaglia, 2015; Battaglia,

Hamrick, & Tenenbaum, 2013; Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2015; Sanborn,

Mansinghka, & Griffiths, 2013). According to this hypothesis, people reconstruct a perceptual

scene using internal representations of the objects and their physically relevant properties (such

as mass, elasticity, and surface friction), and forces acting on objects (such as gravity, friction, or

collision impulses). Relative to physical ground truth, the intuitive physical state representation

is approximate and probabilistic, and oversimplified and incomplete in many ways. Still, it is rich

enough to support mental simulations that can predict how objects will move in the immediate

future, either on their own or in responses to forces we might apply.

This “intuitive physics engine” approach enables flexible adaptation to a wide range of everyday

scenarios and judgments in a way that goes beyond perceptual cues. For example (Figure 4), a

physics-engine reconstruction of a tower of wooden blocks from the game Jenga can be used to

predict whether (and how) a tower will fall, finding close quantitative fits to how adults make these

predictions (Battaglia et al., 2013) as well as simpler kinds of physical predictions that have been

studied in infants (Téglás et al., 2011). Simulation-based models can also capture how people

make hypothetical or counterfactual predictions: What would happen if certain blocks are taken

away, more blocks are added, or the table supporting the tower is jostled? What if certain blocks

were glued together, or attached to the table surface? What if the blocks were made of different

materials (Styrofoam, lead, ice)? What if the blocks of one color were much heavier than other

colors? Each of these physical judgments may require new features or new training for a pattern

recognition account to work at the same level as the model-based simulator.

What are the prospects for embedding or acquiring this kind of intuitive physics in deep learning

systems? Connectionist models in psychology have previously been applied to physical reasoning

tasks such as balance-beam rules (McClelland, 1988; Shultz, 2003) or rules relating distance,

velocity, and time in motion (Buckingham & Shultz, 2000), but these networks do not attempt

to work with complex scenes as input or a wide range of scenarios and judgments as in Figure 4.

24



A

B Changes to Input

Add blocks, blocks made of styrofoam, blocks made of lead, blocks made of goo, 
table is made of rubber, table is actually quicksand, pour water on the tower, 
pour honey on the tower, blue blocks are glued together, red blocks are magnetic, 
gravity is reversed, wind blows over table, table has slippery ice on top...  

Figure 4: The intuitive physics-engine approach to scene understanding, illustrated through tower
stability. (A) The engine takes in inputs through perception, language, memory and other faculties.
It then constructs a physical scene with objects, physical properties and forces, simulates the scene’s
development over time and hands the output to other reasoning systems. (B) Many possible
‘tweaks’ to the input can result in much different scenes, requiring the potential discovery, training
and evaluation of new features for each tweak. Adapted from Battaglia et al. (2013).

A recent paper from Facebook AI researchers (Lerer, Gross, & Fergus, 2016) represents an excit-

ing step in this direction. Lerer et al. (2016) trained a deep convolutional network-based system

(PhysNet) to predict the stability of block towers from simulated images similar to those in Figure

4A but with much simpler configurations of two, three or four cubical blocks stacked vertically.

Impressively, PhysNet generalized to simple real images of block towers, matching human perfor-

mance on these images, meanwhile exceeding human performance on synthetic images. Human and

PhysNet confidence were also correlated across towers, although not as strongly as for the approx-

imate probabilistic simulation models and experiments of Battaglia et al. (2013). One limitation is

that PhysNet currently requires extensive training – between 100,000 and 200,000 scenes – to learn

judgments for just a single task (will the tower fall?) on a narrow range of scenes (towers with two

to four cubes). It has been shown to generalize, but also only in limited ways (e.g., from towers

of two and three cubes to towers of four cubes). In contrast, people require far less experience

to perform any particular task, and can generalize to many novel judgments and complex scenes
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with no new training required (although they receive large amounts of physics experience through

interacting with the world more generally). Could deep learning systems such as PhysNet cap-

ture this flexibility, without explicitly simulating the causal interactions between objects in three

dimensions? We are not sure, but we hope this is a challenge they will take on.

Alternatively, instead of trying to make predictions without simulating physics, could neural net-

works be trained to emulate a general-purpose physics simulator, given the right type and quantity

of training data, such as the raw input experienced by a child? This is an active and intriguing area

of research, but it too faces significant challenges. For networks trained on object classification,

deeper layers often become sensitive to successively higher-level features, from edges to textures

to shape-parts to full objects (Yosinski, Clune, Bengio, & Lipson, 2014; Zeiler & Fergus, 2014).

For deep networks trained on physics-related data, it remains to be seen whether higher layers

will encode objects, general physical properties, forces and approximately Newtonian dynamics. A

generic network trained on dynamic pixel data might learn an implicit representation of these con-

cepts, but would it generalize broadly beyond training contexts as people’s more explicit physical

concepts do? Consider for example a network that learns to predict the trajectories of several balls

bouncing in a box (Kodratoff & Michalski, 2014). If this network has actually learned something

like Newtonian mechanics, then it should be able to generalize to interestingly different scenarios –

at a minimum different numbers of differently shaped objects, bouncing in boxes of different shapes

and sizes and orientations with respect to gravity, not to mention more severe generalization tests

such as all of the tower tasks discussed above, which also fall under the Newtonian domain. Neural

network researchers have yet to take on this challenge, but we hope they will. Whether such models

can be learned with the kind (and quantity) of data available to human infants is not clear, as we

discuss further in Section 5.

It may be difficult to integrate object and physics-based primitives into deep neural networks, but

the payoff in terms of learning speed and performance could be great for many tasks. Consider the

case of learning to play Frostbite. Although it can be difficult to discern exactly how a network

learns to solve a particular task, the DQN probably does not parse a Frostbite screenshot in terms
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of stable objects or sprites moving according to the rules of intuitive physics (Figure 2). But

incorporating a physics-engine-based representation could help DQNs learn to play games such as

Frostbite in a faster and more general way, whether the physics knowledge is captured implicitly in

a neural network or more explicitly in simulator. Beyond reducing the amount of training data and

potentially improving the level of performance reached by the DQN, it could eliminate the need to

retrain a Frostbite network if the objects (e.g., birds, ice-floes and fish) are slightly altered in their

behavior, reward-structure, or appearance. When a new object type such as a bear is introduced,

as in the later levels of Frostbite (Figure 2D), a network endowed with intuitive physics would also

have an easier time adding this object type to its knowledge (the challenge of adding new objects

was also discussed in Marcus, 1998, 2001). In this way, the integration of intuitive physics and

deep learning could be an important step towards more human-like learning algorithms.

4.1.2 Intuitive psychology

Intuitive psychology is another early-emerging ability with an important influence on human learn-

ing and thought. Pre-verbal infants distinguish animate agents from inanimate objects. This

distinction is partially based on innate or early-present detectors for low-level cues, such as the

presence of eyes, motion initiated from rest, and biological motion (Johnson, Slaughter, & Carey,

1998; Premack & Premack, 1997; Schlottmann, Ray, Mitchell, & Demetriou, 2006; Tremoulet

& Feldman, 2000). Such cues are often sufficient but not necessary for the detection of agency.

Beyond these low-level cues, infants also expect agents to act contingently and reciprocally, to

have goals, and to take efficient actions towards those goals subject to constraints (Csibra, 2008;

Csibra, Biro, Koos, & Gergely, 2003; Spelke & Kinzler, 2007). These goals can be socially

directed; at around three months of age, infants begin to discriminate anti-social agents that hurt

or hinder others from neutral agents (Hamlin, 2013; Hamlin, Wynn, & Bloom, 2010), and they

later distinguish between anti-social, neutral, and pro-social agents (Hamlin, Ullman, Tenenbaum,

Goodman, & Baker, 2013; Hamlin, Wynn, & Bloom, 2007).

It is generally agreed that infants expect agents to act in a goal-directed, efficient, and socially
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sensitive fashion (Spelke & Kinzler, 2007). What is less agreed on is the computational architecture

that supports this reasoning and whether it includes any reference to mental states and explicit

goals.

One possibility is that intuitive psychology is simply cues “all the way down” (Schlottmann, Cole,

Watts, & White, 2013; Scholl & Gao, 2013), though this would require more and more cues as the

scenarios become more complex. Consider for example a scenario in which an agent A is moving

towards a box, and an agent B moves in a way that blocks A from reaching the box. Infants and

adults are likely to interpret B’s behavior as ‘hindering’ (Hamlin, 2013). This inference could be

captured by a cue that states ‘if an agent’s expected trajectory is prevented from completion, the

blocking agent is given some negative association.’

While the cue is easily calculated, the scenario is also easily changed to necessitate a different type of

cue. Suppose A was already negatively associated (a ‘bad guy’); acting negatively towards A could

then be seen as good (Hamlin, 2013). Or suppose something harmful was in the box which A didn’t

know about. Now B would be seen as helping, protecting, or defending A. Suppose A knew there

was something bad in the box and wanted it anyway. B could be seen as acting paternalistically.

A cue-based account would be twisted into gnarled combinations such as ‘If an expected trajectory

is prevented from completion, the blocking agent is given some negative association, unless that

trajectory leads to a negative outcome or the blocking agent is previously associated as positive,

or the blocked agent is previously associated as negative, or...’

One alternative to a cue-based account is to use generative models of action choice, as in the

Bayesian inverse planning (or “Bayesian theory-of-mind”) models of Baker, Saxe, and Tenenbaum

(2009) or the “naive utility calculus” models of Jara-Ettinger, Gweon, Tenenbaum, and Schulz

(2015) (See also Jern and Kemp (2015) and Tauber and Steyvers (2011), and a related alternative

based on predictive coding from Kilner, Friston, and Frith (2007)). These models formalize ex-

plicitly mentalistic concepts such as ‘goal,’ ‘agent,’ ‘planning,’ ‘cost,’ ‘efficiency,’ and ‘belief,’ used

to describe core psychological reasoning in infancy. They assume adults and children treat agents

as approximately rational planners who choose the most efficient means to their goals. Planning
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computations may be formalized as solutions to Markov Decision Processes (or POMDPs), taking

as input utility and belief functions defined over an agent’s state-space and the agent’s state-action

transition functions, and returning a series of actions the agent should perform to most efficiently

fulfill their goals (or maximize their utility). By simulating these planning processes, people can

predict what agents might do next, or use inverse reasoning from observing a series of actions to

infer the utilities and beliefs of agents in a scene. This is directly analogous to how simulation

engines can be used for intuitive physics, to predict what will happen next in a scene or to infer

objects’ dynamical properties from how they move. It yields similarly flexible reasoning abilities:

Utilities and beliefs can be adjusted to take into account how agents might act for a wide range

of novel goals and situations. Importantly, unlike in intuitive physics, simulation-based reasoning

in intuitive psychology can be nested recursively to understand social interactions – we can think

about agents thinking about other agents.

As in the case of intuitive physics, the success that generic deep networks will have in capturing intu-

itive psychological reasoning will depend in part on the representations humans use. Although deep

networks have not yet been applied to scenarios involving theory-of-mind and intuitive psychology,

they could probably learn visual cues, heuristics and summary statistics of a scene that happens

to involve agents.5 If that is all that underlies human psychological reasoning, a data-driven deep

learning approach can likely find success in this domain.

However, it seems to us that any full formal account of intuitive psychological reasoning needs to

include representations of agency, goals, efficiency, and reciprocal relations. As with objects and

forces, it is unclear whether a complete representation of these concepts (agents, goals, etc.) could

emerge from deep neural networks trained in a purely predictive capacity. Similar to the intuitive

physics domain, it is possible that with a tremendous number of training trajectories in a variety of

scenarios, deep learning techniques could approximate the reasoning found in infancy even without

learning anything about goal-directed or social-directed behavior more generally. But this is also

unlikely to resemble how humans learn, understand, and apply intuitive psychology unless the

5While connectionist networks have been used to model the general transition that children undergo between the
ages of 3 and 4 regarding false belief (e.g., Berthiaume, Shultz, & Onishi, 2013), we are referring here to scenarios
which require inferring goals, utilities, and relations.
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concepts are genuine. In the same way that altering the setting of a scene or the target of inference

in a physics-related task may be difficult to generalize without an understanding of objects, altering

the setting of an agent or their goals and beliefs is difficult to reason about without understanding

intuitive psychology.

In introducing the Frostbite challenge, we discussed how people can learn to play the game ex-

tremely quickly by watching an experienced player for just a few minutes and then playing a few

rounds themselves. Intuitive psychology provides a basis for efficient learning from others, espe-

cially in teaching settings with the goal of communicating knowledge efficiently (Shafto, Goodman,

& Griffiths, 2014). In the case of watching an expert play Frostbite, whether or not there is an

explicit goal to teach, intuitive psychology lets us infer the beliefs, desires, and intentions of the

experienced player. For instance, we can learn that the birds are to be avoided from seeing how

the experienced player appears to avoid them. We do not need to experience a single example of

encountering a bird – and watching the Frostbite Bailey die because of the bird – in order to infer

that birds are probably dangerous. It is enough to see that the experienced player’s avoidance

behavior is best explained as acting under that belief.

Similarly, consider how a sidekick agent (increasingly popular in video-games) is expected to help a

player achieve their goals. This agent can be useful in different ways under different circumstances,

such as getting items, clearing paths, fighting, defending, healing, and providing information – all

under the general notion of being helpful (Macindoe, 2013). An explicit agent representation can

predict how such an agent will be helpful in new circumstances, while a bottom-up pixel-based

representation is likely to struggle.

There are several ways that intuitive psychology could be incorporated into contemporary deep

learning systems. While it could be built in, intuitive psychology may arise in other ways. Connec-

tionists have argued that innate constraints in the form of hard-wired cortical circuits are unlikely

(Elman, 2005; Elman et al., 1996), but a simple inductive bias, for example the tendency to notice

things that move other things, can bootstrap reasoning about more abstract concepts of agency
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(S. Ullman, Harari, & Dorfman, 2012).6 Similarly, a great deal of goal-directed and socially-

directed actions can also be boiled down to a simple utility-calculus (e.g., Jara-Ettinger et al.,

2015), in a way that could be shared with other cognitive abilities. While the origins of intuitive

psychology is still a matter of debate, it is clear that these abilities are early-emerging and play an

important role in human learning and thought, as exemplified in the Frostbite challenge and when

learning to play novel video games more broadly.

4.2 Learning as rapid model building

Since their inception, neural networks models have stressed the importance of learning. There

are many learning algorithms for neural networks, including the perceptron algorithm (Rosenblatt,

1958), Hebbian learning (Hebb, 1949), the BCM rule (Bienenstock, Cooper, & Munro, 1982), back-

propagation (Rumelhart, Hinton, & Williams, 1986), the wake-sleep algorithm (Hinton, Dayan,

Frey, & Neal, 1995), and contrastive divergence (Hinton, 2002). Whether the goal is supervised

or unsupervised learning, these algorithms implement learning as a process of gradual adjustment

of connection strengths. For supervised learning, the updates are usually aimed at improving the

algorithm’s pattern recognition capabilities. For unsupervised learning, the updates work towards

gradually matching the statistics of the model’s internal patterns with the statistics of the input

data.

In recent years, machine learning has found particular success using backpropagation and large data

sets to solve difficult pattern recognition problems. While these algorithms have reached human-

level performance on several challenging benchmarks, they are still far from matching human-level

learning in other ways. Deep neural networks often need more data than people do in order to solve

the same types of problems, whether it is learning to recognize a new type of object or learning to

play a new game. When learning the meanings of words in their native language, children make

meaningful generalizations from very sparse data (Carey & Bartlett, 1978; Landau, Smith, &

6We must be careful here about what “simple” means. An inductive bias may appear simple in the sense that
we can compactly describe it, but it may require complex computation (e.g., motion analysis, parsing images into
objects, etc.) just to produce its inputs in a suitable form.
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Jones, 1988; E. M. Markman, 1989; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson,

2002; F. Xu & Tenenbaum, 2007, although see Horst and Samuelson 2008 regarding memory

limitations). Children may only need to see a few examples of the concepts hairbrush, pineapple

or lightsaber before they largely ‘get it,’ grasping the boundary of the infinite set that defines each

concept from the infinite set of all possible objects. Children are far more practiced than adults at

learning new concepts – learning roughly nine or ten new words each day after beginning to speak

through the end of high school (Bloom, 2000; Carey, 1978) – yet the ability for rapid “one-shot”

learning does not disappear in adulthood. An adult may need to see a single image or movie of a

novel two-wheeled vehicle to infer the boundary between this concept and others, allowing him or

her to discriminate new examples of that concept from similar looking objects of a different type

(Fig. 1B-i).

Contrasting with the efficiency of human learning, neural networks – by virtue of their generality as

highly flexible function approximators – are notoriously data hungry (the bias/variance dilemma;

Geman, Bienenstock, & Doursat, 1992). Benchmark tasks such as the ImageNet data set for

object recognition provides hundreds or thousands of examples per class (Krizhevsky et al., 2012;

Russakovsky et al., 2015) – 1000 hairbrushes, 1000 pineapples, etc. In the context of learning

new handwritten characters or learning to play Frostbite, the MNIST benchmark includes 6000

examples of each handwritten digit (LeCun et al., 1998), and the DQN of V. Mnih et al. (2015)

played each Atari video game for approximately 924 hours of unique training experience (Figure 3).

In both cases, the algorithms are clearly using information less efficiently than a person learning to

perform the same tasks.

It is also important to mention that there are many classes of concepts that people learn more

slowly. Concepts that are learned in school are usually far more challenging and more difficult

to acquire, including mathematical functions, logarithms, derivatives, integrals, atoms, electrons,

gravity, DNA, evolution, etc. There are also domains for which machine learners outperform human

learners, such as combing through financial or weather data. But for the vast majority of cognitively

natural concepts – the types of things that children learn as the meanings of words – people are still
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far better learners than machines. This is the type of learning we focus on in this section, which

is more suitable for the enterprise of reverse engineering and articulating additional principles that

make human learning successful. It also opens the possibility of building these ingredients into

the next generation of machine learning and AI algorithms, with potential for making progress on

learning concepts that are both easy and difficult for humans to acquire.

Even with just a few examples, people can learn remarkably rich conceptual models. One indicator

of richness is the variety of functions that these models support (A. B. Markman & Ross, 2003;

Solomon, Medin, & Lynch, 1999). Beyond classification, concepts support prediction (Murphy &

Ross, 1994; Rips, 1975), action (Barsalou, 1983), communication (A. B. Markman & Makin,

1998), imagination (Jern & Kemp, 2013; Ward, 1994), explanation (Lombrozo, 2009; Williams

& Lombrozo, 2010), and composition (Murphy, 1988; Osherson & Smith, 1981). These abilities

are not independent; rather they hang together and interact (Solomon et al., 1999), coming for free

with the acquisition of the underlying concept. Returning to the previous example of a novel two

wheeled vehicle, a person can sketch a range of new instances (Figure 1B-ii), parse the concept into

its most important components (Figure 1B-iii), or even create a new complex concept through the

combination of familiar concepts (Figure 1B-iv). Likewise, as discussed in the context of Frostbite,

a learner who has acquired the basics of the game could flexibly apply their knowledge to an infinite

set of Frostbite variants (Section 3.2). The acquired knowledge supports reconfiguration to new

tasks and new demands, such as modifying the goals of the game to survive while acquiring as few

points as possible, or to efficiently teach the rules to a friend.

This richness and flexibility suggests that learning as model building is a better metaphor than

learning as pattern recognition. Furthermore, the human capacity for one-shot learning suggests

that these models are built upon rich domain knowledge rather than starting from a blank slate

(Mikolov, Joulin, & Baroni, 2016; Mitchell, Keller, & Kedar-cabelli, 1986). In contrast, much

of the recent progress in deep learning has been on pattern recognition problems, including object

recognition, speech recognition, and (model-free) video game learning, that utilize large data sets

and little domain knowledge.
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There has been recent work on other types of tasks including learning generative models of images

(Denton, Chintala, Szlam, & Fergus, 2015; Gregor, Danihelka, Graves, Rezende, & Wierstra,

2015), caption generation (Karpathy & Fei-Fei, 2015; Vinyals, Toshev, Bengio, & Erhan, 2014;

K. Xu et al., 2015), question answering (Sukhbaatar, Szlam, Weston, & Fergus, 2015; Weston,

Chopra, & Bordes, 2015), and learning simple algorithms (Graves, Wayne, & Danihelka, 2014;

Grefenstette, Hermann, Suleyman, & Blunsom, 2015); we discuss question answering and learning

simple algorithms in Section 6.1. Yet, at least for image and caption generation, these tasks have

been mostly studied in the big data setting that is at odds with the impressive human ability for

generalizing from small data sets (although see Rezende, Mohamed, Danihelka, Gregor, & Wierstra,

2016, for a deep learning approach to the Character Challenge). And it has been difficult to learn

neural-network-style representations that effortlessly generalize to new tasks that they were not

trained on (see Davis & Marcus, 2015; Marcus, 1998, 2001). What additional ingredients may

be needed in order to rapidly learn more powerful and more general-purpose representations?

A relevant case study is from our own work on the Characters Challenge (Section 3.1; Lake, 2014;

Lake, Salakhutdinov, & Tenenbaum, 2015). People and various machine learning approaches

were compared on their ability to learn new handwritten characters from the world’s alphabets.

In addition to evaluating several types of deep learning models, we developed an algorithm using

Bayesian Program Learning (BPL) that represents concepts as simple stochastic programs – that is,

structured procedures that generate new examples of a concept when executed (Figure 5A). These

programs allow the model to express causal knowledge about how the raw data are formed, and

the probabilistic semantics allow the model to handle noise and perform creative tasks. Structure

sharing across concepts is accomplished by the compositional reuse of stochastic primitives that

can combine in new ways to create new concepts.

Note that we are overloading the word “model” to refer to both the BPL framework as a whole

(which is a generative model), as well as the individual probabilistic models (or concepts) that it

infers from images to represent novel handwritten characters. There is a hierarchy of models: a

higher-level program that generates different types of concepts, which are themselves programs that
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can be run to generate tokens of a concept. Here, describing learning as “rapid model building”

refers to the fact that BPL constructs generative models (lower-level programs) that produce tokens

of a concept (Figure 5B).

Learning models of this form allows BPL to perform a challenging one-shot classification task at

human level performance (Figure 1A-i) and to outperform current deep learning models such as

convolutional networks (Koch, Zemel, & Salakhutdinov, 2015).7 The representations that BPL

learns also enable it to generalize in other, more creative human-like ways, as evaluated using

“visual Turing tests” (e.g., Figure 5B). These tasks include generating new examples (Figure 1A-ii

and Figure 5B), parsing objects into their essential components (Figure 1A-iii), and generating new

concepts in the style of a particular alphabet (Figure 1A-iv). The following sections discuss the three

main ingredients – compositionality, causality, and learning-to-learn – that were important to the

success of this framework and we believe are important to understanding human learning as rapid

model building more broadly. While these ingredients fit naturally within a BPL or a probabilistic

program induction framework, they could also be integrated into deep learning models and other

types of machine learning algorithms, prospects we discuss in more detail below.

4.2.1 Compositionality

Compositionality is the classic idea that new representations can be constructed through the com-

bination of primitive elements. In computer programming, primitive functions can be combined

together to create new functions, and these new functions can be further combined to create even

more complex functions. This function hierarchy provides an efficient description of higher-level

functions, like a part hierarchy for describing complex objects or scenes (Bienenstock, Geman, &

Potter, 1997). Compositionality is also at the core of productivity: an infinite number of repre-

sentations can be constructed from a finite set of primitives, just as the mind can think an infinite

number of thoughts, utter or understand an infinite number of sentences, or learn new concepts

7A new approach using convolutional “matching networks” achieves good one-shot classification performance when
discriminating between characters from different alphabets (Vinyals, Blundell, Lillicrap, Kavukcuoglu, & Wierstra,
2016). It has not yet been directly compared with BPL, which was evaluated on one-shot classification with characters
from the same alphabet.
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relation:!
attached along

relation:!
attached along

relation:!
attached at start

v) exemplars

vi) raw data

iv) object!
template

iii) parts

ii) sub-parts

i) primitives

A B

1 2 1 2

1 21 2

Human or Machine?

Figure 5: A causal, compositional model of handwritten characters. A) New types are generated
compositionally by choosing primitive actions (color coded) from a library (i), combining these sub-
parts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv).
These programs can create different tokens of a concept (v) that are rendered as binary images
(vi). B) Probabilistic inference allows the model to generate new examples from just one example
of a new concept, shown here in a visual Turing Test. An example image of a new concept is shown
above each pair of grids. One grid was generated by 9 people and the other is 9 samples from the
BPL model. Which grid in each pair (A or B) was generated by the machine? Answers by row:
1,2;1,1. Adapted from Lake, Salakhutdinov, and Tenenbaum (2015).
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from a seemingly infinite space of possibilities (Fodor, 1975; Fodor & Pylyshyn, 1988; Marcus,

2001; Piantadosi, 2011).

Compositionality has been broadly influential in both AI and cognitive science, especially as it

pertains to theories of object recognition, conceptual representation, and language. Here we focus

on compositional representations of object concepts for illustration. Structural description models

represent visual concepts as compositions of parts and relations, which provides a strong inductive

bias for constructing models of new concepts (Biederman, 1987; Hummel & Biederman, 1992;

Marr & Nishihara, 1978; van den Hengel et al., 2015; Winston, 1975). For instance, the novel

two-wheeled vehicle in Figure 1B might be represented as two wheels connected by a platform, which

provides the base for a post, which holds the handlebars, etc. Parts can themselves be composed

of sub-parts, forming a “partonomy” of part-whole relationships (G. A. Miller & Johnson-Laird,

1976; Tversky & Hemenway, 1984). In the novel vehicle example, the parts and relations can be

shared and reused from existing related concepts, such as cars, scooters, motorcycles, and unicycles.

Since the parts and relations are themselves a product of previous learning, their facilitation of the

construction of new models is also an example of learning-to-learn – another ingredient that is

covered below. While compositionality and learning-to-learn fit naturally together, there are also

forms of compositionality that rely less on previous learning, such as the bottom-up parts-based

representation of Hoffman and Richards (1984).

Learning models of novel handwritten characters can be operationalized in a similar way. Handwrit-

ten characters are inherently compositional, where the parts are pen strokes and relations describe

how these strokes connect to each other. Lake, Salakhutdinov, and Tenenbaum (2015) modeled

these parts using an additional layer of compositionality, where parts are complex movements cre-

ated from simpler sub-part movements. New characters can be constructed by combining parts,

sub-parts, and relations in novel ways (Figure 5). Compositionality is also central to the construc-

tion of other types of symbolic concepts beyond characters, where new spoken words can be created

through a novel combination of phonemes (Lake, Lee, Glass, & Tenenbaum, 2014) or a new gesture

or dance move can be created through a combination of more primitive body movements.
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An efficient representation for Frostbite should be similarly compositional and productive. A scene

from the game is a composition of various object types, including birds, fish, ice floes, igloos,

etc. (Figure 2). Representing this compositional structure explicitly is both more economical and

better for generalization, as noted in previous work on object-oriented reinforcement learning (Diuk,

Cohen, & Littman, 2008). Many repetitions of the same objects are present at different locations

in the scene, and thus representing each as an identical instance of the same object with the

same properties is important for efficient representation and quick learning of the game. Further,

new levels may contain different numbers and combinations of objects, where a compositional

representation of objects – using intuitive physics and intuitive psychology as glue – would aid in

making these crucial generalizations (Figure 2D).

Deep neural networks have at least a limited notion of compositionality. Networks trained for

object recognition encode part-like features in their deeper layers (Zeiler & Fergus, 2014), whereby

the presentation of new types of objects can activate novel combinations of feature detectors.

Similarly, a DQN trained to play Frostbite may learn to represent multiple replications of the

same object with the same features, facilitated by the invariance properties of a convolutional

neural network architecture. Recent work has shown how this type of compositionality can be

made more explicit, where neural networks can be used for efficient inference in more structured

generative models (both neural networks and 3D scene models) that explicitly represent the number

of objects in a scene (Eslami et al., 2016). Beyond the compositionality inherent in parts, objects,

and scenes, compositionality can also be important at the level of goals and sub-goals. Recent

work on hierarchical-DQNs shows that by providing explicit object representations to a DQN, and

then defining sub-goals based on reaching those objects, DQNs can learn to play games with sparse

rewards (such as Montezuma’s Revenge) by combining these sub-goals together to achieve larger

goals (Kulkarni, Narasimhan, Saeedi, & Tenenbaum, 2016).

We look forward to seeing these new ideas continue to develop, potentially providing even richer

notions of compositionality in deep neural networks that lead to faster and more flexible learning.

To capture the full extent of the mind’s compositionality, a model must include explicit represen-
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an airplane is parked on the 
tarmac at an airport

a group of people standing on 
top of a beach

a woman riding a horse on a 
dirt road

Figure 6: Perceiving scenes without intuitive physics, intuitive psychology, compositionality, and
causality. Image captions are generated by a deep neural network (Karpathy & Fei-Fei, 2015) using
code from github.com/karpathy/neuraltalk2. Image credits: Gabriel Villena Fernández (left),
TVBS Taiwan / Agence France-Presse (middle) and AP Photo / Dave Martin (right). Similar
examples using images from Reuters news can be found at twitter.com/interesting jpg.

tations of objects, identity, and relations – all while maintaining a notion of “coherence” when

understanding novel configurations. Coherence is related to our next principle, causality, which is

discussed in the section that follows.

4.2.2 Causality

Causality is about modeling processes in the world. In concept learning and scene understanding,

causal models reflect the real world processes that produce the perceptual observations. In control

and reinforcement learning, causality is about modeling the structure of the environment, such as

modeling state-to-state transitions or action/state-to-state transitions.

Concept learning and vision models that utilize causality are usually generative (as opposed to

discriminative; see Glossary in Table 1), but not every generative model is also causal. While a

generative model describes a process for generating data, or at least assigns a probability distribu-

tion over possible data points, this generative process may not resemble how the data is produced

in the real world. Causality refers to the subclass of generative models that resemble, at an abstract

level, how the data is actually generated. While generative neural networks such as Deep Belief

Networks (Hinton, Osindero, & Teh, 2006) or variational auto-encoders (Gregor, Besse, Rezende,
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Danihelka, & Wierstra, 2016; Kingma, Rezende, Mohamed, & Welling, 2014) may generate com-

pelling handwritten digits, they mark one end of the “causality spectrum,” since the steps of the

generative process bear little resemblance to steps in the actual process of writing. In contrast, the

generative model for characters using Bayesian Program Learning (BPL) does resemble the steps

of writing – at least at an abstract level – although even more causally faithful models are possible.

Causality has been influential in theories of perception. “Analysis-by-synthesis” theories of per-

ception maintain that sensory data can be more richly represented by modeling the process that

generated it (Bever & Poeppel, 2010; Eden, 1962; Halle & Stevens, 1962; Neisser, 1966). Relat-

ing data to its causal source provides strong priors for perception and learning, as well as a richer

basis for generalizing in new ways and to new tasks. The canonical examples of this approach

are speech and visual perception. For instance, Liberman, Cooper, Shankweiler, and Studdert-

Kennedy (1967) argued that the richness of speech perception is best explained by inverting the

production plan, at the level of vocal tract movements, in order to explain the large amounts of

acoustic variability and the blending of cues across adjacent phonemes. As discussed, causality does

not have to be a literal inversion of the actual generative mechanisms, as proposed in the motor

theory of speech. For the BPL of learning handwritten characters, causality is operationalized by

treating concepts as motor programs, or abstract causal descriptions of how to produce examples

of the concept, rather than concrete configurations of specific muscles (Figure 5A). Causality is an

important factor in the model’s success in classifying and generating new examples after seeing just

a single example of a new concept (Lake, Salakhutdinov, & Tenenbaum, 2015) (Figure 5B).

Causal knowledge has also been shown to influence how people learn new concepts; providing

a learner with different types of causal knowledge changes how they learn and generalize. For

example, the structure of the causal network underlying the features of a category influences how

people categorize new examples (Rehder, 2003; Rehder & Hastie, 2001). Similarly, as related to

the Characters Challenge, the way people learn to write a novel handwritten character influences

later perception and categorization (Freyd, 1983, 1987).

To explain the role of causality in learning, conceptual representations have been likened to intu-
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itive theories or explanations, providing the glue that lets core features stick while other equally

applicable features wash away (Murphy & Medin, 1985). Borrowing examples from Murphy and

Medin (1985), the feature “flammable” is more closely attached to wood than money due to the

underlying causal roles of the concepts, even though the feature is equally applicable to both; these

causal roles derive from the functions of objects. Causality can also glue some features together by

relating them to a deeper underlying cause, explaining why some features such as “can fly,” “has

wings,” and “has feathers” co-occur across objects while others do not.

Beyond concept learning, people also understand scenes by building causal models. Human-level

scene understanding involves composing a story that explains the perceptual observations, drawing

upon and integrating the ingredients of intuitive physics, intuitive psychology, and compositionality.

Perception without these ingredients, and absent the causal glue that binds them together, can

lead to revealing errors. Consider image captions generated by a deep neural network (Figure 6;

Karpathy & Fei-Fei, 2015). In many cases, the network gets the key objects in a scene correct

but fails to understand the physical forces at work, the mental states of the people, or the causal

relationships between the objects – in other words, it does not build the right causal model of the

data.

There have been steps towards deep neural networks and related approaches that learn causal mod-

els. Lopez-Paz, Muandet, Scholköpf, and Tolstikhin (2015) introduced a discriminative, data-driven

framework for distinguishing the direction of causality from examples. While it outperforms exist-

ing methods on various causal prediction tasks, it is unclear how to apply the approach to inferring

rich hierarchies of latent causal variables, as needed for the Frostbite Challenge and (especially)

the Characters Challenge. Graves (2014) learned a generative model of cursive handwriting using

a recurrent neural network trained on handwriting data. While it synthesizes impressive examples

of handwriting in various styles, it requires a large training corpus and has not been applied to

other tasks. The DRAW network performs both recognition and generation of handwritten digits

using recurrent neural networks with a window of attention, producing a limited circular area of

the image at each time step (Gregor et al., 2015). A more recent variant of DRAW was applied
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to generating examples of a novel character from just a single training example (Rezende et al.,

2016). While the model demonstrates an impressive ability to make plausible generalizations that

go beyond the training examples, it generalizes too broadly in other cases, in ways that are not

especially human-like. It is not clear that it could yet pass any of the “visual Turing tests” in Lake,

Salakhutdinov, and Tenenbaum (2015) (Figure 5B), although we hope DRAW-style networks will

continue to be extended and enriched, and could be made to pass these tests.

Incorporating causality may greatly improve these deep learning models; they were trained without

access to causal data about how characters are actually produced, and without any incentive to

learn the true causal process. An attentional window is only a crude approximation to the true

causal process of drawing with a pen, and in Rezende et al. (2016) the attentional window is not

pen-like at all, although a more accurate pen model could be incorporated. We anticipate that

these sequential generative neural networks could make sharper one-shot inferences – with the goal

of tackling the full Characters Challenge – by incorporating additional causal, compositional, and

hierarchical structure (and by continuing to utilize learning-to-learn, described next), potentially

leading to a more computationally efficient and neurally grounded variant of the BPL model of

handwritten characters (Figure 5).

A causal model of Frostbite would have to be more complex, gluing together object representations

and explaining their interactions with intuitive physics and intuitive psychology, much like the game

engine that generates the game dynamics and ultimately the frames of pixel images. Inference is

the process of inverting this causal generative model, explaining the raw pixels as objects and

their interactions, such as the agent stepping on an ice floe to deactivate it or a crab pushing the

agent into the water (Figure 2). Deep neural networks could play a role in two ways: serving as

a bottom-up proposer to make probabilistic inference more tractable in a structured generative

model (Section 4.3.1) or by serving as the causal generative model if imbued with the right set of

ingredients.
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4.2.3 Learning-to-learn

When humans or machines make inferences that go far beyond the data, strong prior knowledge (or

inductive biases or constraints) must be making up the difference (Geman et al., 1992; Griffiths,

Chater, Kemp, Perfors, & Tenenbaum, 2010; Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

One way people acquire this prior knowledge is through “learning-to-learn,” a term introduced by

Harlow (1949) and closely related to the machine learning notions of “transfer learning”, “multi-task

learning” or “representation learning.” These terms refer to ways that learning a new task (or a new

concept) can be accelerated through previous or parallel learning of other related tasks (or other

related concepts). The strong priors, constraints, or inductive bias needed to learn a particular

task quickly are often shared to some extent with other related tasks. A range of mechanisms have

been developed to adapt the learner’s inductive bias as they learn specific tasks, and then apply

these inductive biases to new tasks.

In hierarchical Bayesian modeling (Gelman, Carlin, Stern, & Rubin, 2004), a general prior on

concepts is shared by multiple specific concepts, and the prior itself is learned over the course of

learning the specific concepts (Salakhutdinov, Tenenbaum, & Torralba, 2012, 2013). These models

have been used to explain the dynamics of human learning-to-learn in many areas of cognition,

including word learning, causal learning, and learning intuitive theories of physical and social

domains (Tenenbaum et al., 2011). In machine vision, for deep convolutional networks or other

discriminative methods that form the core of recent recognition systems, learning-to-learn can occur

through the sharing of features between the models learned for old objects (or old tasks) and the

models learned for new objects (or new tasks) (Anselmi et al., 2016; Baxter, 2000; Bottou, 2014;

Lopez-Paz, Bottou, Scholköpf, & Vapnik, 2016; Rusu et al., 2016; Salakhutdinov, Torralba, &

Tenenbaum, 2011; Srivastava & Salakhutdinov, 2013; Torralba, Murphy, & Freeman, 2007;

Zeiler & Fergus, 2014). Neural networks can also learn-to-learn by optimizing hyperparameters,

including the form of their weight update rule (Andrychowicz et al., 2016), over a set of related

tasks.

While transfer learning and multi-task learning are already important themes across AI, and in
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deep learning in particular, they have not yet led to systems that learn new tasks as rapidly and

flexibly as humans do. Capturing more human-like learning-to-learn dynamics in deep networks

and other machine learning approaches could facilitate much stronger transfer to new tasks and

new problems. To gain the full benefit that humans get from learning-to-learn, however, AI systems

might first need to adopt the more compositional (or more language-like, see Section 5) and causal

forms of representations that we have argued for above.

We can see this potential in both of our Challenge problems. In the Characters Challenge as

presented in Lake, Salakhutdinov, and Tenenbaum (2015), all viable models use “pre-training”

on many character concepts in a background set of alphabets to tune the representations they

use to learn new character concepts in a test set of alphabets. But to perform well, current

neural network approaches require much more pre-training than do people or our Bayesian program

learning approach, and they are still far from solving the Characters Challenge.8

We cannot be sure how people get to the knowledge they have in this domain, but we do understand

how this works in BPL, and we think people might be similar. BPL transfers readily to new concepts

because it learns about object parts, sub-parts, and relations, capturing learning about what each

concept is like and what concepts are like in general. It is crucial that learning-to-learn occurs at

multiple levels of the hierarchical generative process. Previously learned primitive actions and larger

generative pieces can be re-used and re-combined to define new generative models for new characters

(Figure 5A). Further transfer occurs by learning about the typical levels of variability within a

typical generative model; this provides knowledge about how far and in what ways to generalize

when we have seen only one example of a new character, which on its own could not possibly carry

any information about variance. BPL could also benefit from deeper forms of learning-to-learn

than it currently does: Some of the important structure it exploits to generalize well is built in

8Humans typically have direct experience with only one or a few alphabets, and even with related drawing
experience, this likely amounts to the equivalent of a few hundred character-like visual concepts at most. For
BPL, pre-training with characters in only five alphabets (for around 150 character types in total) is sufficient to
perform human-level one-shot classification and generation of new examples. The best neural network classifiers
(deep convolutional networks) have error rates approximately five times higher than humans when pre-trained with
five alphabets (23% versus 4% error), and two to three times higher when pre-training on six times as much data (30
alphabets) (Lake, Salakhutdinov, & Tenenbaum, 2015). The current need for extensive pre-training is illustrated
for deep generative models by Rezende et al. (2016), who present extensions of the DRAW architecture capable of
one-shot learning.
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to the prior and not learned from the background pre-training, whereas people might learn this

knowledge, and ultimately a human-like machine learning system should as well.

Analogous learning-to-learn occurs for humans in learning many new object models, in vision and

cognition: Consider the novel two-wheeled vehicle in Figure 1B, where learning-to-learn can operate

through the transfer of previously learned parts and relations (sub-concepts such as wheels, motors,

handle bars, attached, powered by, etc.) that reconfigure compositionally to create a model of the

new concept. If deep neural networks could adopt similarly compositional, hierarchical, and causal

representations, we expect they might benefit more from learning-to-learn.

In the Frostbite Challenge, and in video games more generally, there is a similar interdependence

between the form of the representation and the effectiveness of learning-to-learn. People seem to

transfer knowledge at multiple levels, from low-level perception to high-level strategy, exploiting

compositionality at all levels. Most basically, they immediately parse the game environment into

objects, types of objects, and causal relations between them. People also understand that video

games like this have goals, which often involve approaching or avoiding objects based on their type.

Whether the person is a child or a seasoned gamer, it seems obvious that interacting with the

birds and fish will change the game state in some way, either good or bad, because video games

typically yield costs or rewards for these types of interactions (e.g., dying or points). These types

of hypotheses can be quite specific and rely on prior knowledge: When the polar bear first appears

and tracks the agent’s location during advanced levels (Figure 2D), an attentive learner is sure to

avoid it. Depending on the level, ice floes can be spaced far apart (Figure 2A-C) or close together

(Figure 2D), suggesting the agent may be able to cross some gaps but not others. In this way,

general world knowledge and previous video games may help inform exploration and generalization

in new scenarios, helping people learn maximally from a single mistake or avoid mistakes altogether.

Deep reinforcement learning systems for playing Atari games have had some impressive successes

in transfer learning, but they still have not come close to learning to play new games as quickly

as humans can. For example, Parisotto et al. (2016) presents the “Actor-mimic” algorithm that

first learns 13 Atari games by watching an expert network play and trying to mimic the expert

45



network action selection and/or internal states (for about four million frames of experience each, or

18.5 hours per game). This algorithm can then learn new games faster than a randomly initialized

DQN: Scores that might have taken four or five million frames of learning to reach might now be

reached after one or two million frames of practice. But anecdotally we find that humans can still

reach these scores with a few minutes of practice, requiring far less experience than the DQNs.

In sum, the interaction between representation and previous experience may be key to building

machines that learn as fast as people do. A deep learning system trained on many video games

may not, by itself, be enough to learn new games as quickly as people do. Yet if such a system

aims to learn compositionally structured causal models of a each game – built on a foundation of

intuitive physics and psychology – it could transfer knowledge more efficiently and thereby learn

new games much more quickly.

4.3 Thinking Fast

The previous section focused on learning rich models from sparse data and proposed ingredients for

achieving these human-like learning abilities. These cognitive abilities are even more striking when

considering the speed of perception and thought – the amount of time required to understand a

scene, think a thought, or choose an action. In general, richer and more structured models require

more complex (and slower) inference algorithms – similar to how complex models require more data

– making the speed of perception and thought all the more remarkable.

The combination of rich models with efficient inference suggests another way psychology and neu-

roscience may usefully inform AI. It also suggests an additional way to build on the successes of

deep learning, where efficient inference and scalable learning are important strengths of the ap-

proach. This section discusses possible paths towards resolving the conflict between fast inference

and structured representations, including Helmholtz-machine-style approximate inference in gener-

ative models (Dayan, Hinton, Neal, & Zemel, 1995; Hinton et al., 1995) and cooperation between

model-free and model-based reinforcement learning systems.
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4.3.1 Approximate inference in structured models

Hierarchical Bayesian models operating over probabilistic programs (Goodman et al., 2008; Lake,

Salakhutdinov, & Tenenbaum, 2015; Tenenbaum et al., 2011) are equipped to deal with theory-

like structures and rich causal representations of the world, yet there are formidable algorithmic

challenges for efficient inference. Computing a probability distribution over an entire space of

programs is usually intractable, and often even finding a single high-probability program poses an

intractable search problem. In contrast, while representing intuitive theories and structured causal

models is less natural in deep neural networks, recent progress has demonstrated the remarkable

effectiveness of gradient-based learning in high-dimensional parameter spaces. A complete account

of learning and inference must explain how the brain does so much with limited computational

resources (Gershman, Horvitz, & Tenenbaum, 2015; Vul, Goodman, Griffiths, & Tenenbaum,

2014).

Popular algorithms for approximate inference in probabilistic machine learning have been proposed

as psychological models (see Griffiths, Vul, & Sanborn, 2012, for a review). Most prominently, it

has been proposed that humans can approximate Bayesian inference using Monte Carlo methods,

which stochastically sample the space of possible hypotheses and evaluate these samples according

to their consistency with the data and prior knowledge (Bonawitz, Denison, Griffiths, & Gopnik,

2014; Gershman, Vul, & Tenenbaum, 2012; T. D. Ullman, Goodman, & Tenenbaum, 2012; Vul et

al., 2014). Monte Carlo sampling has been invoked to explain behavioral phenomena ranging from

children’s response variability (Bonawitz et al., 2014) to garden-path effects in sentence processing

(Levy, Reali, & Griffiths, 2009) and perceptual multistability (Gershman et al., 2012; Moreno-

Bote, Knill, & Pouget, 2011). Moreover, we are beginning to understand how such methods could

be implemented in neural circuits (Buesing, Bill, Nessler, & Maass, 2011; Huang & Rao, 2014;

Pecevski, Buesing, & Maass, 2011).9

While Monte Carlo methods are powerful and come with asymptotic guarantees, it is challenging

9In the interest of brevity, we do not discuss here another important vein of work linking neural circuits to
variational approximations (Bastos et al., 2012), which have received less attention in the psychological literature.
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to make them work on complex problems like program induction and theory learning. When

the hypothesis space is vast and only a few hypotheses are consistent with the data, how can

good models be discovered without exhaustive search? In at least some domains, people may not

have an especially clever solution to this problem, instead grappling with the full combinatorial

complexity of theory learning (T. D. Ullman et al., 2012). Discovering new theories can be slow

and arduous, as testified by the long timescale of cognitive development, and learning in a saltatory

fashion (rather than through gradual adaptation) is characteristic of aspects of human intelligence,

including discovery and insight during development (L. Schulz, 2012), problem-solving (Sternberg

& Davidson, 1995), and epoch-making discoveries in scientific research (Langley, Bradshaw, Simon,

& Zytkow, 1987). Discovering new theories can also happen much more quickly – A person learning

the rules of Frostbite will probably undergo a loosely ordered sequence of “Aha!” moments: they

will learn that jumping on ice floes causes them to change color, changing the color of ice floes

causes an igloo to be constructed piece-by-piece, that birds make you lose points, that fish make

you gain points, that you can change the direction of ice floe at the cost of one igloo piece, and so

on. These little fragments of a “Frostbite theory” are assembled to form a causal understanding of

the game relatively quickly, in what seems more like a guided process than arbitrary proposals in

a Monte Carlo inference scheme. Similarly, as described in the Characters Challenge, people can

quickly infer motor programs to draw a new character in a similarly guided processes.

For domains where program or theory learning happens quickly, it is possible that people employ

inductive biases not only to evaluate hypotheses, but also to guide hypothesis selection. L. Schulz

(2012) has suggested that abstract structural properties of problems contain information about the

abstract forms of their solutions. Even without knowing the answer to the question “Where is

the deepest point in the Pacific Ocean?” one still knows that the answer must be a location on a

map. The answer “20 inches” to the question “What year was Lincoln born?” can be invalidated

a priori, even without knowing the correct answer. In recent experiments, Tsividis, Tenenbaum,

and Schulz (2015) found that children can use high-level abstract features of a domain to guide

hypothesis selection, by reasoning about distributional properties like the ratio of seeds to flowers,

and dynamical properties like periodic or monotonic relationships between causes and effects (see
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also Magid, Sheskin, & Schulz, 2015).

How might efficient mappings from questions to a plausible subset of answers be learned? Recent

work in AI spanning both deep learning and graphical models has attempted to tackle this chal-

lenge by “amortizing” probabilistic inference computations into an efficient feed-forward mapping

(Eslami, Tarlow, Kohli, & Winn, 2014; Heess, Tarlow, & Winn, 2013; A. Mnih & Gregor,

2014; Stuhlmüller, Taylor, & Goodman, 2013). We can also think of this as “learning to do

inference,” which is independent from the ideas of learning as model building discussed in the

previous section. These feed-forward mappings can be learned in various ways, for example, using

paired generative/recognition networks (Dayan et al., 1995; Hinton et al., 1995) and variational

optimization (Gregor et al., 2015; A. Mnih & Gregor, 2014; Rezende, Mohamed, & Wierstra,

2014) or nearest-neighbor density estimation (Kulkarni, Kohli, Tenenbaum, & Mansinghka, 2015;

Stuhlmüller et al., 2013). One implication of amortization is that solutions to different problems

will become correlated due to the sharing of amortized computations; some evidence for inferential

correlations in humans was reported by Gershman and Goodman (2014). This trend is an avenue

of potential integration of deep learning models with probabilistic models and probabilistic pro-

gramming: training neural networks to help perform probabilistic inference in a generative model

or a probabilistic program (Eslami et al., 2016; Kulkarni, Whitney, Kohli, & Tenenbaum, 2015;

Yildirim, Kulkarni, Freiwald, & Te, 2015). Another avenue for potential integration is through

differentiable programming (Dalrmple, 2016) – by ensuring that the program-like hypotheses are

differentiable and thus learnable via gradient descent – a possibility discussed in the concluding

section (Section 6.1).

4.3.2 Model-based and model-free reinforcement learning

The DQN introduced by V. Mnih et al. (2015) used a simple form of model-free reinforcement

learning in a deep neural network that allows for fast selection of actions. There is indeed sub-

stantial evidence that the brain uses similar model-free learning algorithms in simple associative

learning or discrimination learning tasks (see Niv, 2009, for a review). In particular, the phasic
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firing of midbrain dopaminergic neurons is qualitatively (Schultz, Dayan, & Montague, 1997) and

quantitatively (Bayer & Glimcher, 2005) consistent with the reward prediction error that drives

updating of model-free value estimates.

Model-free learning is not, however, the whole story. Considerable evidence suggests that the

brain also has a model-based learning system, responsible for building a “cognitive map” of the

environment and using it to plan action sequences for more complex tasks (Daw, Niv, & Dayan,

2005; Dolan & Dayan, 2013). Model-based planning is an essential ingredient of human intelli-

gence, enabling flexible adaptation to new tasks and goals; it is where all of the rich model-building

abilities discussed in the previous sections earn their value as guides to action. As we argued in

our discussion of Frostbite, one can design numerous variants of this simple video game that are

identical except for the reward function – that is, governed by an identical environment model of

state-action-dependent transitions. We conjecture that a competent Frostbite player can easily shift

behavior appropriately, with little or no additional learning, and it is hard to imagine a way of doing

that other than having a model-based planning approach in which the environment model can be

modularly combined with arbitrary new reward functions and then deployed immediately for plan-

ning. One boundary condition on this flexibility is the fact that the skills become “habitized” with

routine application, possibly reflecting a shift from model-based to model-free control. This shift

may arise from a rational arbitration between learning systems to balance the trade-off between

flexibility and speed (Daw et al., 2005; Keramati, Dezfouli, & Piray, 2011).

Similarly to how probabilistic computations can be amortized for efficiency (see previous section),

plans can be amortized into cached values by allowing the model-based system to simulate training

data for the model-free system (Sutton, 1990). This process might occur offline (e.g., in dreaming

or quiet wakefulness), suggesting a form of consolidation in reinforcement learning (Gershman,

Markman, & Otto, 2014). Consistent with the idea of cooperation between learning systems, a

recent experiment demonstrated that model-based behavior becomes automatic over the course of

training (Economides, Kurth-Nelson, Lübbert, Guitart-Masip, & Dolan, 2015). Thus, a marriage

of flexibility and efficiency might be achievable if we use the human reinforcement learning systems
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as guidance.

Intrinsic motivation also plays an important role in human learning and behavior (Berlyne, 1966;

Deci & Ryan, 1975; Harlow, 1950). While much of the previous discussion assumes the standard

view of behavior as seeking to maximize reward and minimize punishment, all externally provided

rewards are reinterpreted according to the “internal value” of the agent, which may depend on

the current goal and mental state. There may also be an intrinsic drive to reduce uncertainty

and construct models of the environment (Edelman, 2015; Schmidhuber, 2015), closely related

to learning-to-learn and multi-task learning. Deep reinforcement learning is only just starting to

address intrinsically motivated learning (Kulkarni et al., 2016; Mohamed & Rezende, 2015).

5 Responses to common questions

In discussing the arguments in this paper with colleagues, three lines of questioning or critiques

have come up frequently. We think it is helpful to address these points directly, to maximize the

potential for moving forward together.

1. Comparing the learning speeds of humans and neural networks on specific tasks is

not meaningful, because humans have extensive prior experience.

It may seem unfair to compare neural networks and humans on the amount of training experience

required to perform a task, such as learning to play new Atari games or learning new handwritten

characters, when humans have had extensive prior experience that these networks have not benefited

from. People have had many hours playing other games, and experience reading or writing many

other handwritten characters, not to mention experience in a variety of more loosely related tasks.

If neural networks were “pre-trained” on the same experience, the argument goes, then they might

generalize similarly to humans when exposed to novel tasks.

This has been the rationale behind multi-task learning or transfer learning, a strategy with a long

history that has shown some promising results recently with deep networks (e.g., Donahue et al.,

51



2013; Luong, Le, Sutskever, Vinyals, & Kaiser, 2015; Parisotto et al., 2016). Furthermore, some

deep learning advocates argue, the human brain effectively benefits from even more experience

through evolution. If deep learning researchers see themselves as trying to capture the equivalent

of humans’ collective evolutionary experience, this would be equivalent to a truly immense “pre-

training” phase.

We agree that humans have a much richer starting point than neural networks when learning

most new tasks, including learning a new concept or to play a new video game. That is the

point of the “developmental start-up software” and other building blocks that we argued are key

to creating this richer starting point. We are less committed to a particular story regarding the

origins of the ingredients, including the relative roles of genetically programmed and experience-

driven developmental mechanisms in building these components in early infancy. Either way, we

see them as fundamental building blocks for facilitating rapid learning from sparse data.

Learning-to-learn across multiple tasks is conceivably one route to acquiring these ingredients,

but simply training conventional neural networks on many related tasks may not be sufficient to

generalize in human-like ways for novel tasks. As we argued in Section 4.2.3, successful learning-

to-learn – or at least, human-level transfer learning – is enabled by having models with the right

representational structure, including the other building blocks discussed in this paper. Learning-

to-learn is a powerful ingredient, but it can be more powerful when operating over compositional

representations that capture the underlying causal structure of the environment, while also building

on the intuitive physics and psychology.

Finally, we recognize that some researchers still hold out hope that if only they can just get big

enough training datasets, sufficiently rich tasks, and enough computing power – far beyond what

has been tried out so far – then deep learning methods might be sufficient to learn representations

equivalent to what evolution and learning provides humans with. We can sympathize with that

hope and believe it deserves further exploration, although we are not sure it is a realistic one.

We understand in principle how evolution could build a brain with the cognitive ingredients we

discuss here. Stochastic hill-climbing is slow – it may require massively parallel exploration, over
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millions of years with innumerable dead-ends – but it can build complex structures with complex

functions if we are willing to wait long enough. In contrast, trying to build these representations

from scratch using backpropagation, deep Q-learning or any stochastic gradient-descent weight

update rule in a fixed network architecture may be unfeasible regardless of how much training data

are available. To build these representations from scratch might require exploring fundamental

structural variations in the network’s architecture, which gradient-based learning in weight space

is not prepared to do. Although deep learning researchers do explore many such architectural

variations, and have been devising increasingly clever and powerful ones recently, it is the researchers

who are driving and directing this process. Exploration and creative innovation in the space of

network architectures have not yet been made algorithmic. Perhaps they could, using genetic

programming methods (Koza, 1992) or other structure-search algorithms (Yamins et al., 2014).

We think this would be a fascinating and promising direction to explore, but we may have to

acquire more patience than machine learning researchers typically express with their algorithms:

the dynamics of structure-search may look much more like the slow random hill-climbing of evolution

than the smooth, methodical progress of stochastic gradient-descent. An alternative strategy is to

build in appropriate infant-like knowledge representations and core ingredients as the starting point

for our learning-based AI systems, or to build learning systems with strong inductive biases that

guide them in this direction.

Regardless of which way an AI developer chooses to go, our main points are orthogonal to this

objection. There are a set of core cognitive ingredients for human-like learning and thought.

Deep learning models could incorporate these ingredients through some combination of additional

structure and perhaps additional learning mechanisms, but for the most part have yet to do so.

Any approach to human-like AI, whether based on deep learning or not, is likely to gain from

incorporating these ingredients.

2. Biological plausibility suggests theories of intelligence should start with neural

networks.

We have focused on how cognitive science can motivate and guide efforts to engineer human-like AI,
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in contrast to some advocates of deep neural networks who cite neuroscience for inspiration. Our

approach is guided by a pragmatic view that the clearest path to a computational formalization of

human intelligence comes from understanding the “software” before the “hardware.” In the case

of this article, we proposed key ingredients of this software in previous sections.

Nonetheless, a cognitive approach to intelligence should not ignore what we know about the brain.

Neuroscience can provide valuable inspirations for both cognitive models and AI researchers: the

centrality of neural networks and model-free reinforcement learning in our proposals for “Thinking

fast” (Section 4.3) are prime exemplars. Neuroscience can also in principle impose constraints on

cognitive accounts, both at the cellular and systems level. If deep learning embodies brain-like

computational mechanisms and those mechanisms are incompatible with some cognitive theory,

then this is an argument against that cognitive theory and in favor of deep learning. Unfortunately,

what we “know” about the brain is not all that clear-cut. Many seemingly well-accepted ideas

regarding neural computation are in fact biologically dubious, or uncertain at best – and thus

should not disqualify cognitive ingredients that pose challenges for implementation within that

approach.

For example, most neural networks use some form of gradient-based (e.g., backpropagation) or

Hebbian learning. It has long been argued, however, that backpropagation is not biologically

plausible; as Crick (1989) famously pointed out, backpropagation seems to require that information

be transmitted backwards along the axon, which does not fit with realistic models of neuronal

function (although recent models circumvent this problem in various ways Liao, Leibo, & Poggio,

2015; Lillicrap, Cownden, Tweed, & Akerman, 2014; Scellier & Bengio, 2016). This has not

prevented backpropagation being put to good use in connectionist models of cognition or in building

deep neural networks for AI. Neural network researchers must regard it as a very good thing,

in this case, that concerns of biological plausibility did not hold back research on this particular

algorithmic approach to learning.10 We strongly agree: Although neuroscientists have not found any

mechanisms for implementing backpropagation in the brain, neither have they produced definitive

evidence against it. The existing data simply offer little constraint either way, and backpropagation

10Michael Jordan made this point forcefully in his 2015 speech accepting the Rumelhart Prize.
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has been of obviously great value in engineering today’s best pattern recognition systems.

Hebbian learning is another case in point. In the form of long-term potentiation (LTP) and spike-

timing dependent plasticity (STDP), Hebbian learning mechanisms are often cited as biologically

supported (Bi & Poo, 2001). However, the cognitive significance of any biologically grounded

form of Hebbian learning is unclear. Gallistel and Matzel (2013) have persuasively argued that

the critical interstimulus interval for LTP is orders of magnitude smaller than the intervals that

are behaviorally relevant in most forms of learning. In fact, experiments that simultaneously

manipulate the interstimulus and intertrial intervals demonstrate that no critical interval exists.

Behavior can persist for weeks or months, whereas LTP decays to baseline over the course of days

(Power, Thompson, Moyer, & Disterhoft, 1997). Learned behavior is rapidly reacquired after

extinction (Bouton, 2004), whereas no such facilitation is observed for LTP (de Jonge & Racine,

1985). Most relevantly for our focus, it would be especially challenging to try to implement the

ingredients described in this article using purely Hebbian mechanisms.

Claims of biological plausibility or implausibility usually rest on rather stylized assumptions about

the brain that are wrong in many of their details. Moreover, these claims usually pertain to the

cellular and synaptic level, with few connections made to systems level neuroscience and subcor-

tical brain organization (Edelman, 2015). Understanding which details matter and which do not

requires a computational theory (Marr, 1982). Moreover, in the absence of strong constraints

from neuroscience, we can turn the biological argument around: Perhaps a hypothetical biological

mechanism should be viewed with skepticism if it is cognitively implausible. In the long run, we

are optimistic that neuroscience will eventually place more constraints on theories of intelligence.

For now, we believe cognitive plausibility offers a surer foundation.

3. Language is essential for human intelligence. Why is it not more prominent here?

We have said little in this article about people’s ability to communicate and think in natural lan-

guage, a distinctively human cognitive capacity where machine capabilities lag strikingly. Certainly

one could argue that language should be included on any short list of key ingredients in human

intelligence: for instance, Mikolov et al. (2016) featured language prominently in their recent paper

55



sketching challenge problems and a road map for AI. Moreover, while natural language processing

is an active area of research in deep learning (e.g., Bahdanau, Cho, & Bengio, 2015; Mikolov,

Sutskever, & Chen, 2013; K. Xu et al., 2015), it is widely recognized that neural networks are far

from implementing human language abilities. The question is, how do we develop machines with a

richer capacity for language?

We ourselves believe that understanding language and its role in intelligence goes hand-in-hand with

understanding the building blocks discussed in this article. It is also true that language builds on

the core abilities for intuitive physics, intuitive psychology, and rapid learning with compositional,

causal models that we do focus on. These capacities are in place before children master language,

and they provide the building blocks for linguistic meaning and language acquisition (Carey, 2009;

Jackendoff, 2003; Kemp, 2007; O’Donnell, 2015; Pinker, 2007; F. Xu & Tenenbaum, 2007).

We hope that by better understanding these earlier ingredients and how to implement and integrate

them computationally, we will be better positioned to understand linguistic meaning and acquisition

in computational terms, and to explore other ingredients that make human language possible.

What else might we need to add to these core ingredients to get language? Many researchers have

speculated about key features of human cognition that gives rise to language and other uniquely

human modes of thought: Is it recursion, or some new kind of recursive structure building ability

(Berwick & Chomsky, 2016; Hauser, Chomsky, & Fitch, 2002)? Is it the ability to reuse symbols

by name (Deacon, 1998)? Is it the ability to understand others intentionally and build shared

intentionality (Bloom, 2000; Frank, Goodman, & Tenenbaum, 2009; Tomasello, 2010)? Is

it some new version of these things, or is it just more of the aspects of these capacities that are

already present in infants? These are important questions for future work with the potential to

expand the list of key ingredients; we did not intend our list to be complete.

Finally, we should keep in mind all the ways that acquiring language extends and enriches the

ingredients of cognition we focus on in this article. The intuitive physics and psychology of infants

is likely limited to reasoning about objects and agents in their immediate spatial and temporal

vicinity, and to their simplest properties and states. But with language, older children become
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able to reason about a much wider range of physical and psychological situations (Carey, 2009).

Language also facilitates more powerful learning-to-learn and compositionality (Mikolov et al.,

2016), allowing people to learn more quickly and flexibly by representing new concepts and thoughts

in relation to existing concepts (Lupyan & Bergen, 2016; Lupyan & Clark, 2015). Ultimately, the

full project of building machines that learn and think like humans must have language at its core.

6 Looking forward

In the last few decades, AI and machine learning have made remarkable progress: Computer

programs beat chess masters; AI systems beat Jeopardy champions; apps recognize photos of your

friends; machines rival humans on large-scale object recognition; smart phones recognize (and, to a

limited extent, understand) speech. The coming years promise still more exciting AI applications,

in areas as varied as self-driving cars, medicine, genetics, drug design and robotics. As a field,

AI should be proud of these accomplishments, which have helped move research from academic

journals into systems that improve our daily lives.

We should also be mindful of what AI has achieved and what it has not. While the pace of progress

has been impressive, natural intelligence is still by far the best example of intelligence. Machine

performance may rival or exceed human performance on particular tasks, and algorithms may take

inspiration from neuroscience or aspects of psychology, but it does not follow that the algorithm

learns or thinks like a person. This is a higher bar worth reaching for, potentially leading to more

powerful algorithms while also helping unlock the mysteries of the human mind.

When comparing people and the current best algorithms in AI and machine learning, people learn

from less data and generalize in richer and more flexible ways. Even for relatively simple concepts

such as handwritten characters, people need to see just one or a few examples of a new concept

before being able to recognize new examples, generate new examples, and generate new concepts

based on related ones (Figure 1A). So far, these abilities elude even the best deep neural networks

for character recognition (Ciresan et al., 2012), which are trained on many examples of each concept

57



and do not flexibly generalize to new tasks. We suggest that the comparative power and flexibility

of people’s inferences come from the causal and compositional nature of their representations.

We believe that deep learning and other learning paradigms can move closer to human-like learning

and thought if they incorporate psychological ingredients including those outlined in this paper. Be-

fore closing, we discuss some recent trends that we see as some of the most promising developments

in deep learning – trends we hope will continue and lead to more important advances.

6.1 Promising directions in deep learning

There has been recent interest in integrating psychological ingredients with deep neural networks,

especially selective attention (Bahdanau et al., 2015; V. Mnih, Heess, Graves, & Kavukcuoglu,

2014; K. Xu et al., 2015), augmented working memory (Graves et al., 2014, 2016; Grefenstette

et al., 2015; Sukhbaatar et al., 2015; Weston et al., 2015), and experience replay (McClelland,

McNaughton, & O’Reilly, 1995; V. Mnih et al., 2015). These ingredients are lower-level than

the key cognitive ingredients discussed in this paper, yet they suggest a promising trend of using

insights from cognitive psychology to improve deep learning, one that may be even furthered by

incorporating higher-level cognitive ingredients.

Paralleling the human perceptual apparatus, selective attention forces deep learning models to

process raw perceptual data as a series of high-resolution “foveal glimpses” rather than all at once.

Somewhat surprisingly, the incorporation of attention has led to substantial performance gains in

a variety of domains, including in machine translation (Bahdanau et al., 2015), object recognition

(V. Mnih et al., 2014), and image caption generation (K. Xu et al., 2015). Attention may help

these models in several ways. It helps to coordinate complex (often sequential) outputs by attending

to only specific aspects of the input, allowing the model to focus on smaller sub-tasks rather than

solving an entire problem in one shot. For instance, during caption generation, the attentional

window has been shown to track the objects as they are mentioned in the caption, where the

network may focus on a boy and then a Frisbee when producing a caption like, “A boy throws a

Frisbee” (K. Xu et al., 2015). Attention also allows larger models to be trained without requiring
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every model parameter to affect every output or action. In generative neural network models,

attention has been used to concentrate on generating particular regions of the image rather than

the whole image at once (Gregor et al., 2015). This could be a stepping stone towards building

more causal generative models in neural networks, such as a neural version of the Bayesian Program

Learning model that could be applied to tackling the Characters Challenge (Section 3.1).

Researchers are also developing neural networks with “working memories” that augment the shorter-

term memory provided by unit activation and the longer-term memory provided by the connection

weights (Graves et al., 2014, 2016; Grefenstette et al., 2015; Reed & de Freitas, 2016; Sukhbaatar

et al., 2015; Weston et al., 2015). These developments are also part of a broader trend towards

“differentiable programming,” the incorporation of classic data structures such a random access

memory, stacks, and queues, into gradient-based learning systems (Dalrmple, 2016). For example,

the Neural Turing Machine (NTM; Graves et al., 2014) and its successor the Differentiable Neural

Computer (DNC; Graves et al., 2016) are neural networks augmented with a random access

external memory with read and write operations that maintains end-to-end differentiability. The

NTM has been trained to perform sequence-to-sequence prediction tasks such as sequence copying

and sorting, and the DNC has been applied to solving block puzzles and finding paths between

nodes in a graph (after memorizing the graph). Additionally, Neural Programmer-Interpreters learn

to represent and execute algorithms such as addition and sorting from fewer examples by observing

input-output pairs (like the NTM and DNC) as well as execution traces (Reed & de Freitas, 2016).

Each model seems to learn genuine programs from examples, albeit in a representation more like

assembly language than a high-level programming language.

While this new generation of neural networks has yet to tackle the types of challenge problems

introduced in this paper, differentiable programming suggests the intriguing possibility of combining

the best of program induction and deep learning. The types of structured representations and model

building ingredients discussed in this paper – objects, forces, agents, causality, and compositionality

– help to explain important facets of human learning and thinking, yet they also bring challenges

for performing efficient inference (Section 4.3.1). Deep learning systems have not yet shown they
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can work with these representations, but they have demonstrated the surprising effectiveness of

gradient descent in large models with high-dimensional parameter spaces. A synthesis of these

approaches, able to perform efficient inference over programs that richly model the causal structure

an infant sees in the world, would be a major step forward for building human-like AI

Another example of combining pattern recognition and model-based search comes from recent AI

research into the game Go. Go is considerably more difficult for AI than chess, and it was only

recently that a computer program – AlphaGo – first beat a world-class player (Chouard, 2016)

by using a combination of deep convolutional neural networks (convnets) and Monte Carlo Tree

search (Silver et al., 2016). Each of these components has made gains against artificial and real

Go players (Gelly & Silver, 2008, 2011; Silver et al., 2016; Tian & Zhu, 2016), and the notion of

combining pattern recognition and model-based search goes back decades in Go and other games.

Showing that these approaches can be integrated to beat a human Go champion is an important AI

accomplishment (see Figure 7). Just as important, however, are the new questions and directions

it opens up for the long-term project of building genuinely human-like AI.

One worthy goal would be to build an AI system that beats a world-class player with the amount

and kind of training human champions receive – rather than overpowering them with Google-scale

computational resources. AlphaGo is initially trained on 28.4 million positions and moves from

160,000 unique games played by human experts; it then improves through reinforcement learning,

playing 30 million more games against itself. Between the publication of Silver et al. (2016) and

before facing world champion Lee Sedol, AlphaGo was iteratively retrained several times in this

way; the basic system always learned from 30 million games, but it played against successively

stronger versions of itself, effectively learning from 100 million or more games altogether (Silver,

2016). In contrast, Lee has probably played around 50,000 games in his entire life. Looking at

numbers like these, it is impressive that Lee can even compete with AlphaGo at all. What would it

take to build a professional-level Go AI that learns from only 50,000 games? Perhaps a system that

combines the advances of AlphaGo with some of the complementary ingredients for intelligence we

argue for here would be a route to that end.
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(a)$ (b)$ (c)$

Figure 2: Some special situations in Go. (a) Ko. After black captures white stone by playing at
a, white is prohibited to capture back immediately by playing at b to prevent repetition of game
state. (b) Ko fight. Black captures white at 1, white cannot capture back. Instead, white can plays
at 2, threatening the three black stones (called Ko threat). If black plays at 3 to connect, white
can then win back the Ko. (c) Ladder. Black plays at 1, threatening to capture the white stone at
circle. White escapes but eventually gets captured at the border. Each time after black plays, white’s
liberties shrink from 2 to 1. Images from Sensei’s Library (http://senseis.xmp.net/).

Name Type Description #planes

standard

our/opponent liberties binary true if the group has 1, 2 and � 3 liberties 6
Ko (See Fig. 2(a)) binary true if it is a Ko location (illegal move) 1

our/opponent stones/empty binary - 3
our/opponent history real how long our/opponent stone is placed 2

opponent rank binary All true if opponent is at that rank 9

extended
border binary true if at border 1

position mask real exp(�.5 ⇤ distance2) to the board center 1
our/opponent territory binary true if the location is closer to us/opponent. 2

Table 1: Features extracted from the current board situation as the input of the network. Note that
extended feature set also includes standard set. As a result, standard set has 21 channels while
extended one has 25 channels.

planes), in particular, free from one step forward simulation. In comparison, Maddison et al. (2015)
uses such features like liberties after the move, captures after the move, etc.

We use a similar way to encode rank in 9 planes as in Maddison et al. (2015). That is, all kyu-players
have all nine planes zero, 1d players has their first plane all-1, 2d players have their second plane
all-1, etc. For 9d and professional players, all the planes are filled with 1.

2.2 NETWORK ARCHITECTURE

Fig. 3 shows the architecture of the network for our best model. We use a 12-layered (d = 12) full
convolutional network. Each convolution layer is followed by a ReLU nonlinearity. Except for the
first layer, all layers use the same width w = 384. No weight sharing is used. We do not use pooling
since they negatively affect the performance. Instead of using two softmax outputs [Maddison et al.
(2015)] to predict black and white moves, we only use one softmax layer to predict the next move,
reducing the number of parameters.

25 feature planes
Conv layer
92 channels
5 × 5 kernel

Conv layers x 10
384 channels
3 × 3 kernel

Conv layer
k maps
3 × 3 kernel

k parallel softmax

x"10"

Our next move (next-1)

Opponent move (next-2)

Our counter move (next-3)

Current board

Figure 3: Our network structure (d = 12, w = 384). The input is the current board situation (with
history information), the output is to predict next k moves.
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(a) (b) (c)Tree-policy%

Default-policy%

Figure 4: A brief illustration of MCTS with DCNN. (a) A game tree. For each node, the statistics
m/n indicates that from the node, n games are emulated, out of which m are won by black. Root
represents the current game state. (b) A new rollout starting from the root. It picks a move from
the current state using tree policy and advances to the next game state, until it picks the a new
move and expand a new leaf. From the leaf, we run default policy until the game ends (black
wins in the illustration). At the same time, the leaf status is sent to a DCNN server for evaluation.
For synchronized implementation, this new node is available for tree policy after the evaluation is
returned. (c) The statistics along the trajectory of the tree policy is updated accordingly.

situations have been evaluated for a given number of MCTS rollouts. In synchronized implemen-
tation, MCTS will wait until DCNN evaluates the board situation of a leaf node, and then expands
the leaf. Default policy can be executed before or after DCNN evaluation. This is much slower but
guarantees that each node is expanded according to the suggested moves given by DCNN.

In our experiments, we evaluate the synchronized case, which achieves 90% win rate against its raw
DCNN player with only 1000 rollouts. Note that our implementation is not directly comparable to
the asynchronized version in Maddison et al. (2015), achieving 86.7% with 100k rollouts.

3 EXPERIMENTS

3.1 SETUP

We use the public KGS dataset (⇠170k games), which is used in Maddison et al. (2015). We use all
games before 2012 as the training set and 2013-2015 games as the test set. This leads to 144,748
games for training and 26,814 games for testing. We also use GoGoD dataset1 (⇠80k games), which
is also used in Clark & Storkey (2015). 75,172 games are used for training and 2,592 for testing.

For evaluation, our model competes with GnuGo, Pachi [Baudis & Gailly (2012)] and Fuego [En-
zenberger et al. (2010)]. We use GnuGo 3.8 level 10, Pachi 11.99 (Genjo-devel) with the pattern
files, and Fuego 1.1 throughout our experiments.

3.2 MOVE PREDICTION

Table 3 shows the performance comparison for move prediction. For models that predict the next k
moves, we only evaluate their prediction accuracy for the immediate next move.

Maddison et al. (2015) d=12,w=384 d=12,w=512 d=16,w=512 d=17,w=512
55.2 57.1 57.3 56.6 56.4

Table 3: Comparison of Top-1 accuracies for next move predictions using standard features. d is the
depth of the model while w is the number of filters at convolutional layers (except the first layer).

With our training framework, we are able to achieve slightly higher Top-1 prediction accuracy (after
hundreds of epochs) compared to Maddison et al. (2015). Note that using standard or extended
features seem to have marginal gains (Fig. 5). For the remaining experiments, we thus use d = 12
and w = 384, as shown in Fig. 3.

1We used GoGoD 2015 summer version, purchased from http://www.gogod.co.uk. We skip ancient
games and only use game records after 1800 AD.

5

(a)	

(b)	 (c)	

Figure 7: An AI system for playing Go combining a deep convolutional network (convnet) and
model-based search through Monte-Carlo Tree Search (MCTS). (A) The convnet on its own can
be used to predict the next k moves given the current board. (B) A search tree with the current
board state as its root and the current “win/total” statistics at each node. A new MCTS rollout
selects moves along the tree according to the MCTS policy (red arrows) until it reaches a new leaf
(red circle), where the next move is chosen by the convnet. From there, play proceeds until the
game’s end according to a pre-defined default policy based on the Pachi program (Baudǐs & Gailly,
2012), itself based on MCTS. (C) The end-game result of the new leaf is used to update the search
tree. Adapted from Tian and Zhu (2016) with permission.
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AI could also gain much by trying to match the learning speed and flexibility of normal human

Go players. People take a long time to master the game of Go, but as with the Frostbite and

Characters challenges (Sections 3.1 and 3.2), humans can learn the basics of the game quickly

through a combination of explicit instruction, watching others, and experience. Playing just a few

games teaches a human enough to beat someone who has just learned the rules but never played

before. Could AlphaGo model these earliest stages of real human learning curves? Human Go

players can also adapt what they have learned to innumerable game variants. The Wikipedia page

“Go variants” describes versions such as playing on bigger or smaller board sizes (ranging from 9×9

to 38×38, not just the usual 19×19 board), or playing on boards of different shapes and connectivity

structures (rectangles, triangles, hexagons, even a map of the English city Milton Keynes). The

board can be a torus, a mobius strip, a cube or a diamond lattice in three dimensions. Holes can

be cut in the board, in regular or irregular ways. The rules can be adapted to what is known as

First Capture Go (the first player to capture a stone wins), NoGo (the player who avoids capturing

any enemy stones longer wins) or Time Is Money Go (players begin with a fixed amount of time

and at the end of the game, the number of seconds remaining on each player’s clock is added to

their score). Players may receive bonuses for creating certain stone patterns or capturing territory

near certain landmarks. There could be four or more players, competing individually or in teams.

In each of these variants, effective play needs to change from the basic game, but a skilled player

can adapt and does not simply have to relearn the game from scratch. Could AlphaGo? While

techniques for handling variable sized inputs in convnets may help for playing on different board

sizes (Sermanet et al., 2014), the value functions and policies that AlphaGo learns seem unlikely to

generalize as flexibly and automatically as people do. Many of the variants described above would

require significant reprogramming and retraining, directed by the smart humans who programmed

AlphaGo, not the system itself. As impressive as AlphaGo is in beating the world’s best players

at the standard game – and it is extremely impressive – the fact that it cannot even conceive of

these variants, let alone adapt to them autonomously, is a sign that it does not understand the

game as humans do. Human players can understand these variants and adapt to them because

they explicitly represent Go as a game, with a goal to beat an adversary who is playing to achieve
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the same goal they are, governed by rules about how stones can be placed on a board and how

board positions are scored. Humans represent their strategies as a response to these constraints,

such that if the game changes, they can begin to adjust their strategies accordingly.

In sum, Go presents compelling challenges for AI beyond matching world-class human performance,

in trying to match human levels of understanding and generalization, based on the same kinds and

amounts of data, explicit instructions, and opportunities for social learning afforded to people. In

learning to play Go as quickly and as flexibly as they do, people are drawing on most of the cognitive

ingredients this paper has laid out. They are learning-to-learn with compositional knowledge. They

are using their core intuitive psychology, and aspects of their intuitive physics (spatial and object

representations). And like AlphaGo, they are also integrating model-free pattern recognition with

model-based search. We believe that Go AI systems could be built to do all of these things,

potentially capturing better how humans learn and understand the game. We believe it would

be richly rewarding for AI and cognitive science to pursue this challenge together, and that such

systems could be a compelling testbed for the principles this paper argues for – as well as building

on all of the progress to date that AlphaGo represents.

6.2 Future applications to practical AI problems

In this paper, we suggested some ingredients for building computational models with more human-

like learning and thought. These principles were explained in the context of the Characters and

Frostbite Challenges, with special emphasis on reducing the amount of training data required and

facilitating transfer to novel yet related tasks. We also see ways these ingredients can spur progress

on core AI problems with practical applications. Here we offer some speculative thoughts on these

applications.

1. Scene understanding. Deep learning is moving beyond object recognition and towards scene

understanding, as evidenced by a flurry of recent work focused on generating natural language

captions for images (Karpathy & Fei-Fei, 2015; Vinyals et al., 2014; K. Xu et al., 2015).
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Yet current algorithms are still better at recognizing objects than understanding scenes, often

getting the key objects right but their causal relationships wrong (Figure 6). We see com-

positionality, causality, intuitive physics and intuitive psychology as playing an increasingly

important role in reaching true scene understanding. For example, picture a cluttered garage

workshop with screw drivers and hammers hanging from the wall, wood pieces and tools

stacked precariously on a work desk, and shelving and boxes framing the scene. In order

for an autonomous agent to effectively navigate and perform tasks in this environment, the

agent would need intuitive physics to properly reason about stability and support. A holistic

model of the scene would require the composition of individual object models, glued together

by relations. Finally, causality helps infuse the recognition of existing tools (or the learning

of new ones) with an understanding of their use, helping to connect different object models

in the proper way (e.g., hammering a nail into a wall, or using a saw horse to support a

beam being cut by a saw). If the scene includes people acting or interacting, it will be nearly

impossible to understand their actions without thinking about their thoughts, and especially

their goals and intentions towards the other objects and agents they believe are present.

2. Autonomous agents and intelligent devices. Robots and personal assistants (such as cell-

phones) cannot be pre-trained on all possible concepts they may encounter. Like a child

learning the meaning of new words, an intelligent and adaptive system should be able to

learn new concepts from a small number of examples, as they are encountered naturally

in the environment. Common concept types include new spoken words (names like “Ban

Ki-Moon” or “Kofi Annan”), new gestures (a secret handshake or a “fist bump”), and new

activities, and a human-like system would be able to learn to both recognize and produce

new instances from a small number of examples. Like with handwritten characters, a system

may be able to quickly learn new concepts by constructing them from pre-existing primitive

actions, informed by knowledge of the underlying causal process and learning-to-learn.

3. Autonomous driving. Perfect autonomous driving requires intuitive psychology. Beyond de-

tecting and avoiding pedestrians, autonomous cars could more accurately predict pedestrian

behavior by inferring mental states, including their beliefs (e.g., Do they think it is safe to
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cross the street? Are they paying attention?) and desires (e.g., Where do they want to go? Do

they want to cross? Are they retrieving a ball lost in the street?). Similarly, other drivers on

the road have similarly complex mental states underlying their behavior (e.g., Do they want

to change lanes? Pass another car? Are they swerving to avoid a hidden hazard? Are they

distracted?). This type of psychological reasoning, along with other types of model-based

causal and physical reasoning, are likely to be especially valuable in challenging and novel

driving circumstances for which there is little relevant training data (e.g. navigating unusual

construction zones, natural disasters, etc.)

4. Creative design. Creativity is often thought to be a pinnacle of human intelligence: chefs de-

sign new dishes, musicians write new songs, architects design new buildings, and entrepreneurs

start new businesses. While we are still far from developing AI systems that can tackle these

types of tasks, we see compositionality and causality as central to this goal. Many com-

monplace acts of creativity are combinatorial, meaning they are unexpected combinations of

familiar concepts or ideas (Boden, 1998; Ward, 1994). As illustrated in Figure 1-iv, novel

vehicles can be created as a combination of parts from existing vehicles, and similarly novel

characters can be constructed from the parts of stylistically similar characters, or familiar

characters can be re-conceptualized in novel styles (Rehling, 2001). In each case, the free

combination of parts is not enough on its own: While compositionality and learning-to-learn

can provide the parts for new ideas, causality provides the glue that gives them coherence

and purpose.

6.3 Towards more human-like learning and thinking machines

Since the birth of AI in the 1950s, people have wanted to build machines that learn and think like

people. We hope researchers in AI, machine learning, and cognitive science will accept our challenge

problems as a testbed for progress. Rather than just building systems that recognize handwritten

characters and play Frostbite or Go as the end result of an asymptotic process, we suggest that deep

learning and other computational paradigms should aim to tackle these tasks using as little training
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data as people need, and also to evaluate models on a range of human-like generalizations beyond

the one task the model was trained on. We hope that the ingredients outlined in this article will

prove useful for working towards this goal: seeing objects and agents rather than features, building

causal models and not just recognizing patterns, recombining representations without needing to

retrain, and learning-to-learn rather than starting from scratch.
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