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Abstract

Searching natural environments, as for example,
when foraging or looking for a landmark in a
city, combine reasoning under uncertainty, planning
and visual search. Existing paradigms for study-
ing search in humans focus on its isolated aspects,
such as step-by-step information sampling or vi-
sual search, without examining advance planning.
We propose and evaluate a Bayesian model of how
people search in a naturalistic maze-solving task.
The model encodes environment exploration as a
sequential process of acquiring information mod-
elled by a Partially Observable Markov Decision
Process (POMDP), which maximises the informa-
tion gained. We show that the search policy aver-
aged across participants is optimal. Individual so-
lutions, however, are highly variable and can be
explained by two heuristics: thinking and guess-
ing. Self-report and inference using a Gaussian
Mixture Model over inverse POMDP consistently
assign most subjects to one style or the another.
By analysing individual participants’ decision times
during the task we show that individuals often solve
partial POMDPs and plan their search a limited
number of steps in advance.
Keywords: spatial search; exploration; Inverse
Bayesian Inference; Partially Observable Markov
Decision Process; decision-making;

Introduction
Exploring has always been part of humanity’s larger
story, from scouring the savannah for food to navi-
gating the scattered Polynesian islands. However,
goal-directed exploration is also a common daily
activity. Imagine an exhibition visitor looking for
a particular painting. Her map shows the size and
location of the gallery rooms, but not where spe-
cific paintings can be located (as, for example, on
Figure 1, top). Which route should she take to find
the painting? Or consider a tourist in a busy market

Figure 1: Examples of searching in a natural environment.
(a.) Tate Britain gallery. (b.) Istanbul bazaar.

who wants to find the best presents for his family, at
a reasonable price. Given limited time, how should
he search the market (Figure 1, bottom)?

Shopping, foraging for food, or discovering a
new ocean are all examples of everyday search,
where the agent has partial knowledge of its envi-
ronment and acts to gain information extending its
knowledge, while seeking reward and minimizing
cost. The desire to search can come about from the
belief that unexplored spaces may contain a higher
reward than is currently available. However, it ap-
pears that exploration is also driven by an intrin-



sic reward for novelty (Dayan & Sejnowski, 1996).
There is also evidence that searching in an abstract
domain is similar to searching in a physical space,
and that search behaviors are are consistent between
individuals. For example, priming strategies of spa-
tial search affects how humans search for words in
memory (Hills et al., 2008).

Intuitively, a rational agent searches by combin-
ing planning, learning, and reasoning under uncer-
tainty to maximise its knowledge about the environ-
ment. Consider the gallery visitor looking for a spe-
cific painting. The visitor has a map of the exhi-
bition space, a view of a few gallery rooms and a
memory of viewing others. In this state, she must
inspect each room and hallway in turn to find out if
the painting is there. Since larger spaces generally
contain more paintings, the visitor may prefer larger
rooms. However, chancing upon a small room at the
side, she will likely take the small cost to visit it, to
avoid backtracking later (Figure 2).

A majority of human observers are quite good
at interpreting searching behavior by other agents
and judge actions generated from a rational plan-
ning strategy as more intelligent than actions gen-
erated from other policies. However, a large mi-
nority consistently attribute intelligence to the out-
come rather than strategy (‘if she found the paint-
ing, she must’ve done something right, regardless
of how she got there’) (Kryven et al., 2016).

Figure 2: Different possible paths: The solid arrow shows
the optimal exploration path when looking for a target,
maximising IG over time, while the dashed arrow shows
a suboptimal path.

Do people plan ahead rationally when they
search? Many formal approaches consider search as

a step-by-step information sampling process, with
little attention to planning in advance beyond a sin-
gle step (Markant et al., 2016; Markant & Gureckis,
2014; Najemnik & Geisler, 2005; Nelson et al.,
2010). In this study we draw on work in robotics,
and formalize everyday search as a Partially Ob-
servable Markov Decision Process (POMDP), sim-
ilar to a model of how people think about other’s
planning (Kryven et al., 2016). We examine
our framework using an empirical escape-the-maze
task, in which human participants searched for hid-
den goal in different maze layouts.

Our results indicate that people maximise the in-
formation gained over several steps ahead, with in-
dividual differences in how deliberately they search.
In the following sections we discuss related work,
followed by a model-based account of optimal
search and its experimental validation. Empirical
analysis shows how the model can be extended to
reflect search in resource-limited domains.

Formal Models of Search
Formally, search can be captured in different
ways. Searching hypothesis spaces in active
learning (Markant et al., 2016) and psychophysi-
cal Bayesian Ideal Observer models (Najemnik &
Geisler, 2005) reward an agent’s reduction in un-
certainty by a common principle of Information
Gain (IG), maximizing the information gained on
the next time step to best adjudicate between avail-
able hypotheses. Novelty preference models, com-
mon in robotics, directly give the agent small re-
wards for taking novel actions (Brafman & Tennen-
holtz, 2002; Bellemare et al., 2016).

The model that comes closest to searching
a natural environment is Bayesian Ideal Ob-
server (Najemnik & Geisler, 2005), which shows
that humans search for a visual target embedded in
noise by maximising the IG of each eye-movement,
but without integrating partial samples across suc-
cessive saccades. Even so, human and primate
searchers achieve near-optimal performance thanks
to a phenomenon of inhibition of return, a tendency
to avoid recently fixated display locations. Thus, the
decisions about where to sample can be explained
by a self-avoiding one step ideal observer who re-



tains a memory for fixated locations.
Studies of searching hypotheses spaces in ac-

tive learning assume reasoning step-by-step, asking
questions like: ‘How many alternative hypothesis
do people evaluate at a time?’ or ‘How do people
incorporate unreliable evidence?’ (Markant et al.,
2016). Normative IG models consider the expected
reduction in uncertainty about the true hypothesis
across all possible outcomes of a query (Nelson et
al., 2010; Markant & Gureckis, 2014). However, in
complex tasks humans may act in accordance with a
simpler model, adjudicating between just two alter-
natives at a time (Markant et al., 2016) and using in-
formation from multiple hypotheses gradually, de-
pending on available mental resources.

To study everyday search across multiple time
steps, we use a maze-world experimental paradigm
in which information is disclosed progressively, in
effect extending the task described in (Kryven et
al., 2016).

Computational Framework
We model search as probabilistic planning in a
POMDP. This framework assumes that the agent
acts sequentially to maximise the reward and min-
imise the cost of each action, given its beliefs about
the world. After each action the agent updates its
beliefs based on observations caused by the previ-
ously chosen action. The family of POMDP models
can describe any behaviour encoded as a discretised
sequential process and share a common principle of
Bayesian belief updating. In theory the model can
admit a variety of cost functions, rewards, reward
discount rates and observation models, depending
on the modelled problem.

Consider an agent looking for an exit in a 2-D
maze (as shown in Figure 2). The agent has a par-
tial knowledge of the maze: it knows the size of the
rooms, and how accessible they are. It knows there
is an exit in the maze, but does not know where it
is. The agent has a 180 degree view, such that the
cells not yet seen by the agent remain dark, each
equally likely to hide the exit. To search efficiently,
the agent decides which rooms to sample first to best
narrow down probabilities over locations of the exit.

For concreteness we assume reward as a function

of what is known about the world with an added ex-
ploration bonus. The bonus ensures a small prob-
ability of taking any action, even if unrewarding,
adding flexibility to possible behaviours.

Formally, we based the agent’s planning on
(Kryven et al., 2016). The world is described
by discrete time, 0 ≤ t ≤ T and a grid of cells
W = {w(i, j)}, w(i, j)∈{wall,empty,goal}. The
agent’s beliefs are a set of probabilities Xt =
{P(xs)t}, over world states {xs} and X0 encodes
the set of the agent’s initial beliefs. On each
time step the agent at a location Lt receives new
observation probabilities Ot = P(W |Xt ,Lt), up-
dates its beliefs using standard Bayesian updating:
Xt+1 = P(W |At ,Xt) ∝ P(Ot |At ,Xt)P(At |Xt)P(W ),
and chooses among actions A(Lt) = {ai} ∈
{N,S,W,E} with a likelihood proportional to the
action’s reward R : Xt ×At 7→ R.

R(Qt(ai)) =
exp(Qt(ai)/τ)

∑ j exp(Qt(a j)/τ)
+ ε, (1)

where Q(a,Lt ,Xt) reflects the value of information
the agent expects to learn about the environment. τ

is a so f tmax parameter controlling decision noise
and ε controls the exploration bonus. The agent’s
reward and observation models are based based
on (Kryven et al., 2016). This model describes an
optimal search, which provides a useful benchmark
to compare with people’s actual search behavior, to
which we turn next.

Experiments
Participants 120 participants were recruited via
Amazon Mechanical Turk, 46 female and 74 male,
mean age 33, SD=10.13. 60 participants did the ex-
periment in the Bonus condition, in which the top
20% of participants received a bonus for finishing
with the overall lowest step cost. The remaining 60
in the No Bonus condition received no bonus.

10 participants were excluded for failing to an-
swer questions and five more answers were gen-
erated by the same person with multiple MTurk
accounts. The procedure received ethics clear-
ance from a University of Waterloo Research Ethics
Committee, and from an MIT Ethics Review Board.



Stimuli and Procedure Participants were in-
structed to find a hidden goal location (‘exit’) in a
series of mazes, by controlling an animated charac-
ter. The character can move one grid square at a
time: N, W, S, E and has a 180 degree view limited
by walls. The maze is initially dark, but is uncov-
ered as the character moves along, so participants
initially know the layout of the rooms, but not where
the goal is (marked as a bright red circle once in line
of sight). Participants are instructed that each of the
dark squares is equally likely to hide the ‘exit’, and
that they should find it in as few steps as possible.

After reading the instructions, participants solved
three practice mazes and answered instruction-
comprehension questions, followed by 12 more
mazes. At the end of the experiment participants
are were asked how they made their decisions. The
participants’ decision times and their path through
the maze were recorded on each trial. The full ex-
perimental procedure is available at http://cgl
.uwaterloo.ca/˜mkryven/.

Results Each solution was labeled according to
the most likely POMDP settings estimated by the
inverse-planning inference: optimal, softmax or
softmax-expl. Here softmax indicates a solution
generated by an agent with τ > 0 (we used τ ∈
[0.01,0.1] ) and expl indicates ε > 0. Additionally,
we calculated the fraction of optimal steps, moves
consistent with the optimal POMDP solution start-
ing in the same state, taken by each participant.

There was no significant difference between the
mean fractions of optimal steps t =−0.6204, p = .5
or mean decision times (DT) t =−0.0644, p = .9 of
participants in the Bonus and the No Bonus con-
ditions, so we collapsed the conditions. Compared
to the No Bonus condition exploration bonus in the
Bonus condition was reduced (Table 1), so partici-
pants who received a bonus made fever unrewarding
moves and paid more attention to instructions.

14 participants (4 participants from the Bonus
condition and 10 from the No Bonus condition)
failed an attention check procedure, scoring a more
than 5 softmax-expl trials. Solutions labelled as
softmax-expl capture solutions with motor mistakes
or unusual strategies, such as entering empty rooms,
following walls or clicking at random. Thus, we

reasoned that participants who generated many of
such solutions were inattentive.

Table 1: Model-based inference over individual trials.
Condition Optimal Softmax Softmax+Expl
Bonus 45% 48% 7%
No Bonus 45% 39% 16%

Next, we calculated the general empirical policy,
a table of probabilities that participants take each
action (N,E,S,W) in each of the visited states. The
idea of empirical policy comes from machine learn-
ing, where robotic navigation is often solved by a
policy for action selection in each of the possible
system states. Remarkably, in all 12 mazes the path
from the starting square following the most likely
actions until the goal was identical to the optimal
solution (e.g. the solid line solution shown on Fig-
ure 2). Thus, solutions chosen by the majority (if
participant could vote on each step) were always
optimal. Individual solutions, however, were often
sub-optimal (e.g. the dashed line on figure 2), so
that individuals took on average 84% optimal steps
( SD = 5.9%).

Figure 3: Participants self-describing as thinking were
more optimal than those self-describing as guessing

What causes sub-optimal solutions? Since ob-
servers evaluate the intelligence of others’ planning
either by outcome or by strategy (Kryven et al.,
2016), we hypothesised there may be a similar di-
vision in how people plan.

Using a semi-automated method (Kryven &
Cowan, 2016) we determined two categories in par-



ticipants’ responses to ‘How did you make your de-
cision?’ as thinking or guessing. Two independent
raters using these categories agreed on 84 out of 91
participants, coding 45 of them as thinking and 39
as guessing. For example, a response was coded as
thinking if it read: ‘I tried to maximise the number
of squares revealed per step.’ and as guessing if it
read ‘I followed my gut. The remainder were ran-
domly assigned to either group. Participants who
self-described as thinking were on average more
optimal (t = 2.574, p = .01 and Figure 3).

Independent estimates obtained by a Gaussian
Mixture Model (GMM) over fractions of optimal
steps identify the two peaks coinciding with think-
ing and guessing means. Both Akaike information
criterion (AIC) and Bayesian Information Criterion
(BIC) prefer a GMM with two components ( µ1 =
.86 and µ2 = .78, AIC = −250.99,BIC = −238.44
) over three (µ1 = .87,µ2 = .79 and µ3 = .94, AIC =
−246.78,BIC =−226.69).

Possibly, people guess to minimise cognitive ef-
fort. However, since guessers may sometimes do
better than optimal, some may gamble on subopti-
mal moves intentionally, which can be modelled by
τ > 0 or by a biased prior belief X0.

Model-Free validation To validate the model and
differentiate between causes of guessing we anal-
ysed participant’s DT as a measure of cognitive ef-
fort. DT were pre-processed to remove data-points
longer than 10s and outliers more than 3 standard
deviations away from the mean, discarding 1.4%
of measurements. We normalised DT by mean-
dividing to remove the effect of participant, obtain-
ing a DT distribution with a mean at 690.8ms and a
median at 530ms.

Informally inspecting DT at different maze loca-
tions revealed that participants are faster in some lo-
cations than in others. Therefore, we coded each
square along each trajectory by a pre-processing
script as shown on figure 4. DT distribution den-
sities in each type of squares are shown on figure 5.
B squares are not shown, since the B-distribution is
identical to the N-distribution delayed by 20.67ms
(t =−5.0216, p <= .0001).

Fully solving a POMDP requires computing a so-
lution at the start of the trial and following it until

the end. So if participants solve a POMDP fully
then DT should be large at the starting square and
increase slightly at observation points (O and G on
figure 4) by the time it takes to perform easy vi-
sual search. If, however, participants are solving a
POMDP partly, DT at ordinary observations points
(O squares) should be longer compared to goal ob-
servations points (G squares).

Figure 4: Maze locations were coded as: X-the starting
step, O - observation points, N - neutral squares, B - be-
fore an observation point and G - observations from where
the goal was observed.

DT distributions contradict the hypothesis that
participants solve POMDP fully (figure 5). Al-
though, DT in the starting square are the longest,
DT in G and O squares are significantly differ-
ent according to a Kolmogorov-Smirnov test ( D =
0.18, p < .0001) and a lot longer than expected
from an easy visual search, in support of a partial
POMDP solution.

Figure 5: Decision time distribution densities across dif-
ferent maze locations.



Discussion
We proposed and evaluated a Bayesian model of
how humans search in a naturalistic maze-solving
task, which requires combining visual search, plan-
ning, and reasoning under uncertainty. The model
encodes search behaviour as a sequential process of
acquiring information conveniently modelled by a
POMDP, which maximises the information gained.

The model predicts solutions averaged across
participants, and offers functional causes for vari-
ance in individual solutions: softmax rewards, ex-
ploration bonus, and biased prior beliefs. When
classifying participants’ self-reports of their strat-
egy as thinking or guessing, more deliberate plan-
ning was captured as more optimal by the model.

Model-free analysis, however, reveals a distri-
bution of effort inconsistent with fully solving a
POMDP. At least some suboptimal solutions are
caused by participants planning a limited the num-
ber of steps ahead, minimising cost and effort in ad-
dition to maximising information. Some suboptimal
strategies may also be intentional: Participants may
gamble on an unlikely outcome, or have a complex
model assuming that the goal is hidden by an adver-
sary. We are currently investigating possible causes
of suboptimal planning, as well as how many steps
ahead people plan.

Our model advances the study of how people
search, and offers a formal framework in which it
can be explored. While our study focused on a sim-
ple spatial task, everyday search and exploration is
much more than a searching in a physical space.
The imperative that drives explorers to search the
depths of the ocean also motivates an artist to search
abstract spaces of images, or a child to explore
possible explanations. Abstracting search formally
takes a step toward conceptualising the common
cognitive process that animates human curiosity and
exploration across domains.
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