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Abstract
Eating onion ice cream is improbable, and levitating ice cream
is impossible. But scooping ice cream using sadness is not
just impossible: it is inconceivable. While prior work has
examined the distinction between improbable and impossi-
ble events, there has been little empirical research on incon-
ceivability. Here, we report a behavioral and computational
study of inconceivability in three parts. First, we find that
humans reliably categorize events as inconceivable, separate
from probable, improbable, and impossible. Second, we find
that we can decode the modal category of a sentence using
language-model-derived estimates of subjective event proba-
bilities. Third, we reproduce a recent finding that improbable
events yield slowest response times in a possibility judgment
task, and show that inconceivable events are faster to judge
than impossible and improbable events. Overall, our results
suggest that people distinguish the impossible from the incon-
ceivable, and such distinctions may be based on graded rather
than discrete judgments.
Keywords: impossibility; inconceivability; modal reasoning;
language models; event knowledge; type errors

Introduction
Some things are impossible, but some things are more im-
possible than others. Levitating a feather with one’s mind is
impossible, but still easier or more probable than levitating a
rock (Shtulman & Morgan, 2017; McCoy & Ullman, 2019).
Such graded judgements of impossibility are the topic of on-
going study in cognitive science and cognitive development,
with the general motivation that studying what makes things
easier or harder in the imagination reveals people’s under-
standing of everyday reality. Within this research direction,
there have been different (though not mutually exclusive) ex-
planations for what makes some things seem more impossi-
ble than others. These include causal violations (Shtulman
& Morgan, 2017), violations of core knowledge and intuitive
physics (McCoy & Ullman, 2019; Lewry, Curtis, Vasilyeva,
Xu, & Griffiths, 2021), and moves across ontological hierar-
chies (Griffiths, 2015), among others.

But, just as there is a dividing line between the merely
improbable and the impossible, there may be a category of
events even more impossible than impossible. Levitating a
feather with your mind is impossible in our world, but can
still be imagined as occurring in a fictional world, and fit into
our intuitive theories of possible worlds. By contrast, ‘levi-
tating a feather using the number five’, or ‘finding the square-
root of dogs’ are events that can’t be evaluated or construed in

1Equal contribution.

any possible world. Borrowing from philosophy, we refer to
such events as inconceivable (Gendler & Hawthorne, 2002).

One view is that in day-to-day decision making and reason-
ing, we judge whether things are possible or impossible based
on whether we can conceive of a scenario in which they occur
(Gendler & Hawthorne, 2002). For example, it is easy to con-
ceive of a “red square”, but not “a square that is not a square”,
and thus we might judge the former to be possible, while the
latter is impossible. Of course, some things that we can con-
ceive of might not be possible – we can imagine a world
where levitation exists, while knowing that it is impossible
given the physical laws of the natural world. While the rela-
tionship between conceivability and possibility has been the
topic of philosophical research, there has been little empiri-
cal and computational cognitive science study of inconceiv-
ability. A related line of work in cognitive development has
investigated people’s distinction between the impossible and
the merely improbable (Shtulman & Carey, 2007; Shtulman,
2009; Goulding, Khan, Fukuda, Lane, & Ronfard, 2023),
building upon the assumption that there is a dividing line be-
tween physical impossibilities (e.g., walking on water) and
“pseudo-impossibilities” (e.g., growing a beard down to one’s
toes). However, it remains poorly understood whether incon-
ceivability and impossibility also form meaningfully distinct
modal categories, or whether people treat inconceivability as
simply an instance of impossibility.

Here we report a behavioral and computational study of
inconceivability, in three parts. In the first part, we exam-
ined whether people readily and reliably distinguish incon-
ceivable events from other modal categories (probable, im-
probable, and impossible). Such a categorization test follows
the logic of cognitive development studies used to conclude
young children do not distinguish improbable from impossi-
ble events (Shtulman & Carey, 2007). We found that people
are highly consistent in their categorizations, suggesting these
categories are easily distinguished from each other.

People’s ready distinction between the impossible and in-
conceivable raises the question of how such a distinction is
made: is it a difference in kind or a difference in degree? In
other words, are inconceivable events processed in a qualita-
tively different manner than impossible events, or are they
just really, really impossible? One hypothesis in support
of the first view is that inconceivability is the result of the
mind hitting a category error (Magidor, 2009; Ryle, 1949),

1338
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



Prefix Probable Improbable Impossible
(Physics)

Impossible
(Magic)

Inconceivable
(Semantics)

Inconceivable
(Syntax)

Baking a cake using an oven an airfryer a refrigerator superpowers anger grasp
Chilling a drink using ice snow fire pixies tomorrow at
Washing your hair with shampoo detergent air mermaids minutes though
Drawing a picture using a pencil lipstick a mountain magic a smell always

Table 1: Sample stimuli used in our experiments.

a point at which people’s mental model breaks down. Such
a process would parallel the “type errors” encountered by
type-based computer programs. For example, the expres-
sion ‘square root(45)’ will be evaluated by most computer
programs, but trying to evaluate ‘square root(‘dog’)’ will be
rejected as a type violation, as ‘dog’ is simply not the kind
of thing you can apply the square-root program to. Some
researchers have proposed that types, which enforce the ex-
pected inputs and outputs of a program, may form the basis of
mental computation across domains and behaviors (Morales,
2018; Sosa & Ullman, 2022). The argument would then go
that inconceivable events are categorized on the basis of type
errors, while impossible events are not. However, a differ-
ent hypothesis to the type-error process is that people have a
single, graded notion of probability where all modal events
exist on a spectrum, including the impossible and inconceiv-
able. Modal categories could then be read out by defining a
straightforward transformation on top of the underlying prob-
abilities – for example, by defining thresholds on probability
values (improbable events are 1-in-100, impossible are 1-in-
a-million, inconceivable is 1-in-a-trillion). This hypothesis
may accord with proposals that selectional restrictions are
based on statistical associations (Resnik, 1993, 1996).

In the second part, we contrast the hypotheses that peo-
ple’s distinction between impossible and inconceivable are
one of kind or degree. We examined whether events that vary
in their modality can be distinguished through their subjec-
tive probability, as estimated by string probabilities from lan-
guage models, which can be treated as purely probabilistic
models of language generation. If people categorize incon-
ceivable and impossible events as separate, while both are
assigned the same near-zero probability, it would suggest the
distinction is not made on the basis of probability. However,
we find that we can decode the modal category of a sentence
using a model’s log-probabilities, suggesting these modal cat-
egories can be distinguished using just probability.

In the third and final part, we examined the response time
(RT) associated with judging the possibility of an event, as a
measure of processing difficulty (cf. Goulding et al., 2023),
and a potential behavioral signature that distinguishes the im-
possible and inconceivable. Using our novel materials, we re-
produce Goulding et al.’s finding that improbable events take
the longest time to judge. In addition, we found that incon-
ceivable events are substantially faster to judge than impossi-
ble or improbable events.

Overall, our findings show that people do distinguish the

impossible from the inconceivable, both by a direct catego-
rization and by an indirect processing difficulty measure. We
find that this distinction (and modal distinctions in general)
can be decoded from probability as captured by language
models, supporting the view that such judgments in people
may be based on graded rather than discrete judgments. In
the discussion, we consider limitations and additional steps
needed to tease the graded and discrete options apart.

Experiment 1: Can people reliably categorize
inconceivable events?

In our first experiment, we ask whether humans consistently
categorize events as probable, improbable, impossible, or in-
conceivable. Our main questions are whether humans cate-
gorize events in a way that is consistent with the underlying
coding of conditions, and what kinds of errors are made.

Stimuli We manually constructed a set of 30 items designed
to cover several modal categories (see examples in Table 1).
Each item consists of a shared prefix denoting a common-
place event with a transitive verb and object, as well as the
beginning of a phrase describing how the event occurs (e.g.,
“Baking a cake using”). No explicit subject is specified.
Each item prefix is associated with six candidate continua-
tions, each of which completes the phrase describing how the
event occurs. These continuations reflect different types of
modal relationships to the prefix. Since the region that mod-
ulates the modal category of the event occurs at the end of
the phrase, these stimuli are well-suited to test autoregres-
sive (i.e., “left-to-right”) language models, which condition
on preceding context to predict the subsequent tokens.

The Probable and Improbable conditions reflect events
that are possible given the physical laws of the real world.
Probable continuations are prototypical or highly expected
(e.g., “baking a cake using an oven”, or “washing your hair
with shampoo”). Improbable continuations are unconven-
tional, but do not violate any physical or social constraints
based on norms in the United States (e.g., “baking a cake us-
ing an airfryer”, or “washing your hair with detergent”).

We also considered two Impossible conditions: one where
events are impossible because of physical constraints (Impos-
siblePhysics), and one where events are impossible because
of magic (ImpossibleMagic). For example, while baking a
cake using a refrigerator or using superpowers are both phys-
ically impossible in the real world, the former is impossible
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Figure 1: (a) Proportion of trials in Experiment 1 where human responses matched the underlying condition coding. Dashed
line indicates chance (25%). Error bars indicate bootstrapped 95% CI. (b) Response rates in each condition of Experiment 1.
Cell annotations are rounded to 2 decimal places for visualization purposes, so row values may appear to not sum to 1.

due to thermodynamics whereas the latter appeals to a mag-
ical concept that does not exist. We investigate magic-based
impossibility because we people might reason about these
scenarios based on intuitive physics (e.g., levitating rocks ver-
sus levitating feathers; Shtulman & Morgan, 2017).

Finally, we considered two types of Inconceivable condi-
tions: one where events constitute category errors (Inconceiv-
ableSemantic), and one where the stimulus has a syntactic vi-
olation (InconceivableSyntactic). The InconceivableSeman-
tic condition completes the prefix with an abstract noun that
renders the event inconceivable (e.g., “chilling a drink using
tomorrow”). The InconceivableSyntactic condition features a
continuation that makes the full phrase ungrammatical, typ-
ically by featuring a verb, adverb, or preposition instead of
the expected noun (e.g., “chilling a drink using at”). This
condition serves as a baseline, since we expect both humans
and language models (LMs) to recognize these expressions
as ill-formed. In the current experiment, this means that we
expect humans to reliably distinguish these items from the
Probable, Improbable, and Impossible items, all of which are
grammatically well-formed. In Experiment 2, we expect LMs
to reliably assign lower probabilities to these continuations,
as shown in prior LM testing (Marvin & Linzen, 2018; Hu,
Gauthier, Qian, Wilcox, & Levy, 2020; Warstadt et al., 2020).

Methods We recruited N = 30 participants on Prolific, with
a self-reported native language of English. Participants were
compensated at an hourly rate of $12. Each participant saw
each of the 30 items, one item per trial. On each trial, partici-
pants saw a prefix and a continuation in one of the six condi-
tions (e.g., “Baking a cake using an oven”). Their task was to
categorize the stimulus into one of four categories (by press-
ing keyboard buttons): “probable”, “improbable”, “impossi-
ble”, or “nonsense”.1 After responding on each trial, partic-
ipants saw a screen saying “Your response has been logged”

1We used the label “nonsense” instead of “inconceivable” to
avoid jargon, while capturing a similar intuition.

for 1 second. Each participant saw an equal number of tri-
als in each condition (i.e., 5 trials for each of the 6 condi-
tions). The order of trials and conditions was randomized.
Prior to the experiment, participants were familiarized with
definitions and examples of each category, and were required
to correctly complete 8 practice trials.

Results Figure 1a shows accuracy for each condition, or the
proportion of trials where human responses matched the un-
derlying condition coding. Participants achieved near-ceiling
accuracy in the Probable and InconceivableSyntax condi-
tions, lower accuracy in the ImpossibleMagic and Inconceiv-
ableSemantics conditions, and lowest (but above-chance) ac-
curacy in the Improbable and ImpossiblePhysics conditions.

Errors in these conditions were not random, but instead re-
flected structured patterns (Figure 1b). For example, people
were most likely to mislabel the Improbable items as “prob-
able” (29%). This seems perfectly reasonable, as the distinc-
tion between Probable and Improbable is a matter of degree:
both types of events are possible, but differ in the magni-
tudes of their probabilities, which can vary based on each
individual’s experiences and environments. For example, a
culinary student who specializes in creative airfryer recipes
might be more likely to label “baking a cake using an air-
fryer” as “probable” than the average home baker. Interest-
ingly, there were extremely few cases of mislabeling Probable
items as “improbable” (3%). We speculate that this asymme-
try could be attributed to the quality of the Probable stimuli:
they reference common, prototypical events that are likely
shared across the life experience of our participants.

We also observe a slight tendency to mislabel Improba-
ble items as “impossible”, and vice versa. Improbable items
were labeled as “impossible” 12% of the time, and Impos-
siblePhysics items were labeled as “improbable” 15% of the
time. One potential explanation is that modal judgments of
(im)possibility are subject to personal experience in the same
way judgments of (im)probability are. Notably, the depen-
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dence of (im)possibility on life experience has been observed
in children, where younger children are more likely they are
to judge a highly improbable event as impossible (Shtulman
& Carey, 2007). While the majority of responses correctly
label Impossible* items as “impossible” and Inconceivable*
items as “nonsense”, we also observe some confusability be-
tween impossibility and inconceivability. 28% of responses
mislabeled ImpossiblePhysics as “nonsense”, and 21% mis-
labeled InconceivableSemantics as “impossible”. These pat-
terns suggest that, while people readily distinguish incon-
ceivable from impossible (and other modal categories), the
boundaries between these categories may be graded and de-
pend on individuals’ subjective experiences.

Experiment 2: Do probabilities distinguish
conceivable and inconceivable events?

Next, we ask whether events with different modalities (prob-
able, improbable, impossible, or inconceivable) can be dis-
tinguished based on a single graded quantity: their subjective
probability of occurring. In order to estimate these proba-
bilities, we leverage state-of-the-art neural network language
models (LMs). LMs are trained with the objective of pre-
dicting sequences of tokens, by which they may implicitly
learn the latent properties of the world that make certain lin-
guistic expressions more or less likely. Since people commu-
nicate about events (McRae & Matsuki, 2009) and observa-
tions (Louwerse, 2011, 2018), it may be reasonable to expect
that language itself contains structured information about the
world. Indeed, prior work has shown that LMs capture impor-
tant aspects of commonsense and world knowledge (Chang &
Bergen, 2023), such as the distinction between possible and
impossible events (Kauf et al., 2023), and the structure of per-
ceptual spaces (Abdou et al., 2021; Patel & Pavlick, 2022).
The autoregressive next-token-prediction objective used to
train LMs also has connections to real-time language com-
prehension in humans: psycholinguistic studies have demon-
strated that humans engage in prediction about upcoming
linguistic content (Altmann & Kamide, 1999; Levy, 2008;
Smith & Levy, 2013) and use event knowledge to update
their expectations (McRae & Matsuki, 2009; Bicknell, El-
man, Hare, McRae, & Kutas, 2010; Matsuki et al., 2011).
It is therefore plausible that LMs may learn structured infor-
mation about the world (and events occurring in the world)
in service of optimizing the objective of next-word predic-
tion. Building upon these arguments, we use LMs as a tool
for computing fine-grained estimations of event probabilities,
with the assumption that string descriptions of more probable
events will be assigned higher probability.2

Methods We use the same stimuli as in Experiment 1 (Ta-
ble 1). To estimate how (un)expected an event is, we mea-

2This assumption has limitations: for example, due to report-
ing biases, it is possible that text corpora may overestimate the oc-
currence of unlikely or impossible events (Gordon & Van Durme,
2013). We return to this issue in the Discussion.
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Figure 2: Surprisal (negative log probability) values assigned
by language models to continuations in each condition.

sure the surprisal S (Hale, 2001; Levy, 2008), or negative log
probability, of the continuation c conditioned on its prefix p:

S(c, p) =− logP(c|p) (1)

If a model has learned to represent event probabilities in a
way that conforms to the normative coding of our stimuli,
then it should assign lowest surprisal to Probable continua-
tions, higher surprisal to Improbable continuations, and high-
est surprisal to Impossible and Inconceivable continuations.

By comparing the surprisal of different continuations con-
ditioned on the same prefix, there is the potential confound of
observing differences driven by frequency effects. For exam-
ple, we might observe S(an airfryer|Baking a cake using) >
S(an oven|Baking a cake using), simply because “an aifryer”
(the Improbable continuation) occurs less frequently than “an
oven” (the Probable continuation) in written text. One way
to address this would be to hold the continuation constant
while varying the prefix across comparisons, as is done in
other targeted evaluation of LMs. However, this is infeasi-
ble for our materials: for example, the continuations in the
ImpossibleMagic condition (like “superpowers”) could never
be physically possible. Therefore, we instead validate our
materials by comparing the n-gram frequency counts of each
continuation across conditions.

We evaluated two open-source large language models:
Llama-2-7B (Touvron et al., 2023) and Mistral-7B-v0.1
(Mistral-7B; Jiang et al., 2023). Both models are autoregres-
sive Transformers with 7 billion parameters. Llama-2-7B was
trained on 2 trillion tokens of internet text, whereas the train-
ing data details of Mistral-7B are unknown.

Results Figure 2 shows the surprisal values for contin-
uations in each condition. For both of our tested mod-
els, the condition-level surprisal averages (means and medi-
ans) are ordered in the following way (mirroring the order-
ing of the x-axis): Probable < Improbable < Impossible-
Physics < ImpossibleMagic < InconceivableSemantics < In-
conceivableSyntax. A one-sided Kolmogorov-Smirnov test
for these pairwise comparisons revealed significant differ-
ences between the distributions, except for ImpossibleMagic
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Figure 3: n-gram log frequency counts (estimated from
Google Books) of continuations in each condition.

< InconceivableSemantics.3 This suggests that the modal
categories from our materials can be distinguished in string
probability space (with the potential exception of Impossi-
bleMagic and InconceivableSemantics). This contrasts with
the findings of Kauf et al. (2023), who find that models strug-
gle to differentiate between likely and unlikely events.

As a control, we wanted to ensure that the differences
in surprisal values across conditions were not explained
by differences in frequencies. We estimated the (uncon-
ditional) n-gram frequency of the continuations using the
Google Books corpus. Figure 3 shows log frequency counts
across conditions. The frequencies do not significantly dif-
fer across the Probable, Improbable, and ImpossiblePhysics
conditions, and are in fact higher in the Inconceivable* con-
ditions (which, if anything, would bias surprisal values to be
lower in the Inconceivable* conditions relative to the others).
This suggests that it is unlikely that n-gram frequency statis-
tics are driving the surprisal orderings reported in Figure 2.

Experiment 3: How do people judge the
possibility of inconceivable events?

In our third experiment, we measured reaction times (RTs)
in a task where people are asked to judge whether an event
is possible or not possible. This is a simpler task than the
categorization tested in Experiment 1, and matches the tasks
used in prior studies of RT across modal categories. Goulding
et al. (2023) find that RTs are highest for improbable events,
and lower for ordinary (here, what we call “probable”) and
impossible events. This experiment serves as a replication of
this finding using a new set of materials, and also contributes
new data about RT patterns for judging inconceivable events.

Stimuli We used the same set of stimuli as in Experiment
1, except we only kept items where at least 75% of ratings
in Experiment 1 agreed with the underlying condition coding
(averaged across conditions). This resulted in 18 items for
Experiment 3. We also made some minor changes to improve
the clarity of the items.

Methods In order to get a robust estimate of RTs, we re-
cruited a large sample (N = 299) of participants on Prolific,

3We additionally verified that the patterns observed in Figure 2
held at the item-level (i.e., across conditions for a given item prefix).

with a self-reported native language of English. Participants
were compensated at an hourly rate of $12. Each participant
saw each of the 18 items, one item per trial. On each trial, par-
ticipants saw a question of the form “Could someone [PRE-
FIX] [CONTINUATION]?”, where the continuation comes
from one of the six conditions (e.g., “Could someone bake a
cake using an oven?”). Their task was to respond “Yes” or
“No” by pressing keyboard buttons ‘1’ or ‘0’. After respond-
ing on each trial, participants saw a screen saying “Your re-
sponse was logged” for 1 second. Each participant saw an
equal number of trials in each condition (i.e., 3 trials for each
of the 6 conditions). Prior to the experiment, participants
were required to correctly complete 8 practice trials.

Response times were measured in milliseconds using
browser-based jsPsych, which has been empirically vali-
dated (Reimers & Stewart, 2015) and produces RT measure-
ments similar to those by standard psychophysics software
(de Leeuw & Motz, 2016). We preprocessed the data in the
following way. First, for basic quality control, we only kept
participants who achieved an accuracy of at least 80% and
passed the comprehension check within 3 attempts. Then,
we only kept participants with reasonable variance in RT (to
avoid people who always respond as quickly as possible) by
removing participants whose standard deviation in RT was at
least two standard deviations away from the mean standard
deviation. After performing these exclusions, we had data
from 247 participants. Finally, we normalized RTs within
each participant, and removed RTs that were at least three
standard deviations away from the participant mean.

Results Figure 4 shows normalized response time means
across the six tested conditions. First, we reproduce the find-
ing from Goulding et al. (2023) using our materials: RTs are
the highest in the Improbable condition, lowest in Probable,
and second highest in ImpossiblePhysics. This pattern is con-
sistent with the model proposed by Shtulman (2009), where
people first generate a modal intuition, and then reflect on this
intuition (e.g., by simulating the event; Shtulman & Carey,
2007) before finally reaching a modal judgment. On this
view, people develop modal intuitions by searching through
memory to retrieve knowledge or experience that is similar to
the event in question. This process takes less time for events
that are frequently encountered (i.e., in the Probable condi-
tion) or clearly beyond the realm of normal experience (i.e.,
in the Impossible condition), but takes more time for events
that are unfamiliar but do not immediately violate any physi-
cal or causal principles (i.e., in the Improbable condition).

In addition, we find that RTs are substantially faster in the
InconceivableSemantics condition than in the Improbable and
Impossible conditions. One explanation for why inconceiv-
able events are judged so quickly, relative to improbable and
impossible events, is that it is easy to recognize them as in-
consistent in some ontological way. For example, “locking a
door with a day” might be so clearly nonsensical that people
bypass any further reflection about the event.
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Figure 5: Proportion of “yes” responses (i.e., affirming the
event to be possible) in Experiment 3 versus model-derived
surprisal of continuation.

Experiment 3 also served as a way to validate whether
model-derived surprisal values capture people’s subjective
judgments of event probabilities. If surprisals do approxi-
mate these subjective judgments, then we would expect that
the surprisal of a continuation should predict whether people
tend to affirm the possibility of the event. Figure 5 shows that
the proportion of trials where people affirmed the event (i.e.,
judged it to be possible) does indeed decrease as the surprisal
increases. We take this to suggest that, within the scope of
our experiments, model-derived surprisals do a decent job of
capturing people’s subjective judgments of event probability.

Discussion
Beyond probable, improbable, and impossible, there is the in-
conceivable. While a great deal of recent research has cogni-
tively studied the distinctions between and within improbable
and impossible events, far less work has empirically or com-
putationally examined people’s reasoning about inconceiv-
able events. Here, we investigated inconceivable events as
a distinct mental category, and found that people reliably dis-
tinguished inconceivable events from other modal categories,
including impossible ones, and showed different associated
processing times as measured by RT for this category. These
findings expand on an ongoing research program in cogni-
tive science and cognitive development that examines peo-
ple’s varying judgements of impossible events, and their dis-

tinction from the merely improbable.

While people distinguish the impossible and the inconceiv-
able, this distinction may be one of degree, or of kind. To
examine these different options, we used language models to
estimate event probabilities for events of different modalities.
We found that modal event categories can in principle be dis-
tinguished by the probabilities associated with them. Such
a finding lends support to the possibility that the impossi-
ble/inconceivable distinction (and other modal distinctions)
may be based on a graded continuum. However, it remains
an open possibility that people do in fact process the incon-
ceivable in a different way than the impossible.

One specific proposal of a difference in kind between im-
possibility and inconceivability is that judgements of incon-
ceivability follow the experience of a category error, which
are analogous to type errors in typed computer programs
(Sosa & Ullman, 2022). In much the same way that a com-
puter program for calculating square-roots expects a number
and would throw an error when encountering a string, the
mind may expect ‘baking a cake using a’ to be followed by
a physical object, and throw an error if it is followed by the
wrong type (e.g. “the number three”). A promising direction
for future work is to use inconceivability as a way to investi-
gate potential behavioral signatures of type-based reasoning.

One limitation of our study is using LM-derived string
probabilities to estimate the probability of an event. As dis-
cussed in Experiment 2, this methodology rests on an as-
sumption that the likelihood of using a particular linguistic
expression to describe an event is a proxy for how frequently
the event occurs. This assumption faces at least two chal-
lenges. The first challenge, reporting bias, affects possible
events. Low-likelihood events may be over-represented in
language, since people are incentivized to talk about them,
whereas high-likelihood events may be underrepresented in
language, since there is little communicative benefit of talk-
ing about them (Sorower et al., 2011; Gordon & Van Durme,
2013). Reporting bias is most likely to skew models’ proba-
bility estimates of Probable and Improbable events, as events
with sufficiently low probabilities (e.g., Impossible and In-
conceivable) might occur so infrequently that they are hardly
described in language at all. In our study, we do find that
LM probabilities reflect the expected ordering of Probable >
Improbable, suggesting that modern LMs can overcome re-
porting biases to some extent (cf. Shwartz & Choi, 2020).
The second challenge affects non-possible events. There may
be cases where a particular string completion makes an event
impossible, but is still highly predictable given the context.
For example, given “The wizard plucked a scale from his
fire-breathing”, the completion “dragon” might be extremely
likely, even though dragons do not exist. This is not a ma-
jor concern for the materials here, since the prefixes describe
commonplace physical events, where completions that make
the event impossible would likely only occur in highly spe-
cific contexts (and would thus be assigned low probability).
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