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Abstract
We present Temporal and Object Quantification Net-
works (TOQ-Nets), a new class of neuro-symbolic
networks with a structural bias that enables them
to learn to recognize complex relational-temporal
events. This is done by including reasoning layers
that implement finite-domain quantification over ob-
jects and time. The structure allows them to general-
ize directly to input instances with varying numbers
of objects in temporal sequences of varying lengths.
We evaluate TOQ-Nets on input domains that re-
quire recognizing event-types in terms of complex
temporal relational patterns. We demonstrate that
TOQ-Nets can generalize from small amounts of
data to scenarios containing more objects than were
present during training and to temporal warpings of
input sequences.

1 Introduction
Every day, people interpret events and actions in terms of
concepts, defined over temporally evolving relations among
agents and objects [Zacks et al., 2007; Stränger and Hommel,
1996]. For example, in a soccer game, people can easily rec-
ognize when one player has control of the ball, when a player
passes the ball to another player, or when a player is offsides.
Although it requires reasoning about intricate relationships
among sets of objects over time, this cognitive act is effortless,
intuitive, and fast. It also generalizes directly over different
numbers and arrangements of players, and detailed timings
and trajectories. In contrast, most computational represen-
tations of sequential concepts are based on fixed windows
of space and time, and lack the ability to perform relational
generalization.

In this paper, we develop generalizable representations for
learning complex activities in time sequences from realistic
data. As illustrated in Fig. 1, we can describe complex events
with a first-order linear temporal logic [FO-LTL; Pnueli 1977]
formula, which allows us to flexibly decompose an input se-
quence into stages that satisfy different criteria over time.
Object quantifiers (∀ and ∃) are used to specify conditions
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on sets of objects that define each stage. Such representa-
tions immediately support generalization to situations with a
varying number of objects, and sequences with different time
warpings.

More concretely, the variety of complicated spatio-temporal
trajectories that high pass can refer to in a soccer game can
be described in these terms: in a high pass from player A to
teammate B, A is close to the ball (distance(A, ball) < θ1)
and moving (velocity(A) > θ2) until the ball moves over
the ground (zposition(ball) > θ3), which is in turn until
teammate B gets control of the ball (teammate(A,B) ∧
distance(B, ball) < θ1). Beyond modeling human actions
in physical environments, these structures can be applied to
events in any time sequence of relational states, e.g., charac-
terizing particular offensive or defensive maneuvers in board
games such as chess or in actual conflicts, or detecting a pro-
cess of money-laundering amidst financial transaction records.

In this paper, we propose a neuro-symbolic approach to
learning to recognize temporal relational patterns, called Tem-
poral and Object Quantification Networks (TOQ-Nets), in
which we design structured neural networks with an explicit
bias that represents finite-domain quantification over both en-
tities and time. A TOQ-Net is a multi-layer neural network
whose inputs are the properties of agents and objects and their
relationships, which may change over time. Each layer in the
TOQ-Net performs either object or temporal quantification.

The key idea of TOQ-Nets is to use tensors to represent
relations between objects, and to use tensor pooling opera-
tions over different dimensions to realize temporal and object
quantifiers (G and ∀). For example, the colorful matrix in
Fig. 1(a) can be understood as a matrix representing a unary
color property of a set of 8 entities over a sequence of 8 time
steps. Representing a sequence of relations among objects
over time would require a 3-dimensional tensor. Crucially,
the design of TOQ-Nets allows the same network weights to
be applied to domains with different numbers of objects and
time sequences of different lengths. By stacking object and
temporal quantification operations, TOQ-Nets can easily learn
to represent higher-level sequential concepts based on the re-
lations between entities over time, starting from low-level
sensory input and supervised with only high-level class labels.

There are traditional symbolic learning or logic synthesis
methods that construct first-order or linear temporal logic
expressions from accurate symbolic data [Neider and Gavran,
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Figure 1: (a) An input sequence composed of relational states: each column represents the state of an entity that changes over time. A logic
formula describes a complex concept or feature that is true of this temporal sequence using object and temporal quantification. The sequence is
segmented into three stages: throughout the first stage, holds for at least one entity, until the second stage, in which each entity is always
either or , until the third stage, in which eventually becomes true for at least one of the entities. (b) Such events can be described using
first-order linear temporal logic expressions.

2018; Camacho et al., 2018; Chou et al., 2020]. TOQ-Nets
take a different approach and can learn from noisy data by
backpropagating gradients, which allows them to start with
a general perceptual processing layer that is directly fed into
logical layers for further processing.

We evaluate TOQ-Nets on two perceptually and conceptu-
ally different benchmarks: trajectory-based sport event detec-
tion and human activity recognition, demonstrating several
important contributions. First, TOQ-Nets outperform both
convolutional and recurrent baselines for modeling temporal-
relational concepts across benchmarks. Second, by exploiting
temporal-relational features learned through supervised learn-
ing, TOQ-Nets achieve strong few-shot generalization to novel
actions. Finally, TOQ-Nets exhibit strong generalization to
scenarios with more entities than were present during training
and are robust w.r.t. time warped input trajectories. These
results illustrate the power of combining symbolic represen-
tational structures with learned continuous-parameter repre-
sentations to achieve robust, generalizable interpretation of
complex relational-temporal events.

2 TOQ-Nets
The input to a TOQ-Net is a tensor representation of the prop-
erties of all entities at each moment in time. For example, in a
soccer game, the input encodes the position of each player and
the ball, as well as their team membership at each step of an
extended time interval. The output is a label of the category
of the sequence, such as the type of soccer play it contains.

The first layer of a TOQ-Net (Fig. 2 (i)) extracts temporal
features for each entity with an input feature extractor that
focuses on entity features within a fixed and local time window.
These features may be computed, e.g., by a convolutional
neural network or a bank of parametric feature templates. The
output of this step is a collection of nullary, unary, and binary
relational features over time for all entities. Throughout the
paper we will assume that all output tensors of this layer are
binary-valued, but it can be extended directly to real-valued

functions. This input feature extractor is task-specific and is
not the focus of this paper.

Second, these temporal-relational features go through sev-
eral relational reasoning layers (RRLs), detailed in Section 2.2,
each of which performs linear transformations, sigmoid activa-
tion, and object quantification operations. The linear and sig-
moid functions allow the network to realize learned Boolean
logical functions, and the object quantification operators can
realize quantifiers. Additional RRLs enable deeper nesting of
quantified expressions, as illustrated in Fig. 2. All operations
in these layers are performed for all time steps in parallel.

Next, the RRLs perform a final quantification, computing for
each time step a set of a nullary features that are passed to the
temporal reasoning layers (TRLs), as detailed in Section 2.3.
Each TRL performs linear transformations, sigmoid activation,
and temporal quantification, allowing the model to realize a
subset of linear temporal logic [Pnueli, 1977]. As with RRLs,
adding more TRLs enables the network to realize logical forms
with more deeply nested temporal quantifiers.

In the last layer, all object and time information is projected
into a set of features of the initial time step, which summarize
the temporal-relational properties of the entire trajectory (e.g.,
“the kicker eventually scores”), and fed into a final softmax
unit to obtain classification probabilities for the sequence.

It is important to understand the representational power
of this model. The input transformation layer learns basic
predicates and relations that will be useful for defining more
complex concepts, but no specific predicates or relations are
built into the network in advance. The relational reasoning
layers build quantified expressions over these basic properties
and relations, and might construct expressions that could be
interpretable as “the player is close to the ball.” Finally, the
temporal reasoning layer applies temporal operations to these
complex expressions, such as “the player is close to the ball
until the ball moves with high speed.” Critically, none of
the symbolic properties or predicates are hand defined—they
are all constructed by the initial layer in order to enable the
network to express the concept it is being trained on.
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Figure 2: A TOQ-Net contains three modules: (i) an input feature extractor, (ii) relational reasoning layers, and (iii) temporal reasoning layers.
To illustrate the model’s representational power, we show that logical forms of increasing complexity can be realized by stacking multiple
layers.

TOQ-Nets are not fully first-order: all quantifiers operate
only over the finite domain of the input instance, and can be
seen as “short-hand” for finite disjunctions or conjunctions
over objects or time points. In addition, the depth of the logi-
cal forms it can learn is determined by the fixed depth of the
network. However, our goal is not to fully replicate temporal
logic, but to bring ideas of object and temporal quantification
into neural networks, and to use them as structural inductive bi-
ases to build models that generalize better from small amounts
of data to situations with varying numbers of objects and time
courses.

2.1 Temporal-Relational Feature Representation
TOQ-Nets use tensors as internal representations between lay-
ers; they represent, all at once, the values of all predicates and
relations grounded on all objects at all time points. The opera-
tions in a TOQ-Net are vectorized, operating in parallel on all
objects and times, sometimes expanding the dimensionality
via outer products, and then re-projecting into smaller dimen-
sions via max-pooling. This processing style is analogous to
representing an entire graph using an adjacency matrix and
using matrix operations to compute properties of the nodes or
of the entire graph. In TOQ-Nets, the input to the network, as
well as the feature output of intermediate layers, is represented
as a tuple of three tensors.

Specifically, we use a vector of dimension D0 to represent
aspects of the state that are global and do not depend on any
specific object at each time t. We use a matrix of shapeN×D1

to represent the unary properties of each entity at time t, where
N is the number of entities and D1 is the hidden dimension
size. Similarly, we use a tensor of shape N × N × D2 to
represent the relations between each pair of entities at time
step t. As a concrete example, illustrated in Fig. 2, the number
of entities N is the total number of players plus one (the ball).
For each entity x and each time step, the inputs are their 3D
position, type (ball or player) and team membership. The
TOQ-Net outputs the action performed by the target player.
Since there are only entity features, the input trajectory is
encoded with a “unary” tensor of shape T ×N ×D1, where
T is the length of the trajectory. That is, there are no nullary
or binary inputs in this case.

2.2 Relational Reasoning Layers
Our Relational reasoning layers (RRLs) follow prior work on
Neural Logic Machines [Dong et al., 2019], illustrated in
Fig. 3 (i). Consider a specific time step t. At each layer l, the
input to a neural logic layer is a 3-tuple (Pl−1, Ql−1, Rl−1),
which corresponds to nullary, unary, and binary features re-
spectively. Their shapes are D0, N ×D1, and N ×N ×D2.
The output is another 3-tuple (Pl, Ql, Rl), given by

Pl = NNP (Concat [Pl−1;max(Ql−1,dim = 0)]) ,

Ql = NNQ (Concat [Ql−1;max(Rl−1,dim = 0);

max(Rl−1,dim = 1); expand(Pl−1,dim = 1)]) ,

Rl = NNR (Concat [Rl−1; expand(Ql−1, dim = 0);

expand(Ql−1, dim = 1)]) .

where NN∗ are single fully-connected layers with sigmoid
activations. For unary and binary features, NNQ and NNR

are applied along the feature dimension. That is, we apply the
same linear transformation to the unary features of all enti-
ties. A different linear transformation is applied to the binary
features of all entity pairs. Concat[· ; ·] is the concatenation
operation, applied to the last dimension of the tensors (the
feature dimension). max, also called the “reduced” max op-
eration, takes the maximum value along the given axis of a
tensor. The expand operation, also called “broadcast,” will
duplicate the input tensor N times and stack them together
along the given axis. RRLs are applied identically to the input
features at every time step t. That is, we use the same neural
network weights in a RRL for all time steps in parallel.

RRLs are motivated by relational logic rules in a finite and
fully grounded universe. The max reduction operations imple-
ment a differentiable version of an existential quantifier over
the finite universe of individuals, given that the truth values
of the propositions are represented as values in (0.0, 1.0). Be-
cause preceding and subsequent RRLs can negate propositions
as needed, we omit explicit implementation of finite-domain
universal quantification, although it could be added by includ-
ing analogous min reductions. Thus, as illustrated in Fig. 3 (i),
given input features q1 (x, t) and q2 (x, t), we can realize the
formula ∃x. q1 (x, t) ∧ q2 (x, t) by stacking two such layers.
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Figure 3: Illustration of (i) relational reasoning layers and (ii) temporal reasoning layers. We provide two illustrative running traces. (i) The
first relational reasoning layer takes unary predicates q1 and q2 as input and its output Q1 is able to represent q1 ∧ q2. The max(Q1, dim = 0)
in layer 2 can represent ∃x. q1(x, t)∧ q2(x, t). (ii) Assume PK encodes the occurance of events e1 and e2 at each time step. The first temporal
reasoning layer can realize always e2 with a temporal pooling from time step 3 to time step T . In the second temporal reasoning layer, the
temporal pooling summarizes that e1 holds true from time step 1 to 2. Thus, the NN should be able to realize e1 until (always e2).

Throughout the paper we have been using only nullary,
unary, and binary features, but the proposed framework it-
self can be easily extended to higher-order relational features.
From a graph network [Bruna et al., 2014; Kipf and Welling,
2017; Battaglia et al., 2018] point of view, one can treat these
features as the node and edge embeddings of a fully-connected
graph and the relational reasoning layers as specialized graph
neural network layers for realizing object quantifiers.

2.3 Temporal Reasoning Layers
Temporal reasoning layers (TRLs) perform quantification op-
erations similar to relational reasoning layers, but along the
temporal rather than the object dimension. The first TRL takes
as input the summarized event representation produced by the
K-th relational reasoning layer, P (t)

K for at all time steps t, as
a matrix of shape T ×D. Each TRL is computed as

P
(t)
K+l = max

t′>t
NNl

(
Concat

[
P

(t′)
K+l−1; max

t≤t′′<t′
P

(t′′)
K+l−1

])
.

(1)
We start from inspecting each element in this formula.

1. PK+l−1 is the output tensor of the previous temporal
reasoning layer, of shape T × C, where T is the number
of time steps, and C is the number of feature channels.
Each entry in this tensor P (t)

K+l−1 [i] can be interpreted
as: event i happens at time t.

2.
(
maxt≤t′′<t′ P

(t′′)
K+l−1

)
, abbreviated as Q(t,t′)

k+l−1 in the
following text, is a vector, of shape C. Its entry
Q

(t,t′)
k+l−1[i], where t ≤ t′, represents the concept that

event i happens some time between t and t′. Impor-
tantly, together with the preceding and subsequent neu-
ral network operations, which can realize negation opera-
tions, it also allows us to describe the event that i holds
true for all time steps between t and t′.

3. NN l is a fully connected neural network with sigmoidal
activation, which gets uniformly applied to all time steps
t and a future time step t′ > t. Its input is com-
posed of two parts: the events that happen at t′, i.e.,
P

(t)
K+l−1, and the events that happen between t and t′,

summarized with temporal quantification operations, i.e.,(
maxt≤t′′<t′ P

(t′′)
K+l−1

)
.

4. The outer-most max pooling operation maxt′>t enumer-
ates over all t′ > t, and test whether the condition speci-
fied by NN l holds for at least one such t′.

A special case is the first temporal reasoning layer. It takes
PK as its input, which is the output of last relational reasoning
layer. Thus, the first temporal reasoning layer implements:

P
(t)
K+1 = NN1

(
max

t≤t′′<T
P

(t′′)
K

)
,

where T is the sequence length. Note that, there is no enumer-



Input 1-st Layer 2-nd Layer
t p(t) q(t) Gp Fp Gq Fq p U (Gq)

1 T T F T F T T
2 T F F T F T T
3 F T F F T T F
4 F T F F T T F

Table 1: A running example of different temporal quantification
formulas that TOQ-Nets can realize. For clarity, we use T and F for
True/False. In the actual computation, they are “soft” Boolean values
ranges in [0, 1]. G means always; F means Eventually; U means
until.

Algorithm 1 An example temporal structure that the second
temporal reasoning layer can recognize.

Input: p(t), q(t), (Gp)(t), (Fp)(t), (Gq)(t), and (Fq)(t)
Output: (pU(Gq))) (t), which is true if p holds true from

time step t until q becomes always true.
1: for t← 1 to T do
2: for t′ ← t+ 1 to T do
3: if ∀t′′ ∈ [t, t′). p(t′′) and (Gq)(t′) then
4: (pU(Gq))) (t)← true
5: end if
6: end for
7: end for

ation for a future time step t′ > t involved. In addition, for all
temporal layers, we add residual connections by concatenating
their inputs with the outputs.

Next, let’s consider a running example for the com-
putation: how a TOQ-Net can recognize the event
that: event p holds true until event q becomes al-
ways true. In LTL, this can be written as pU(Gq).
Using the plain first-order logic (FOL) language, we
can describe it as: ∃ t. [∀t′. (0 ≤ t′ < t) =⇒ p(t′)) ∧
(∀t′. (t′ ≥ t) =⇒ q(t′)].

For simplicity, we consider a tensor representation for two
events p(t) and q(t), where p(t) = 1 if it happens at time
step t and p(t) = 0 otherwise. Given the input sequence of
length 4 in Table 1 (p(t) and q(t)), the first layer is capable of
computing the following four properties for each time step t:
Gp(always p), which is true if p holds true for all future time
steps starting from t, Fp(eventually p), which is true if p is
true for at least one time step starting from t, and similarly,
Gq(always q) and Fq(eventually q). Overall, together with
residual connections, the first layer can recognize six useful
events: p(t), q(t) (from residual connection), Gp, Fp, Gq, and
Fq (by temporal quantification, i.e. pooling operations along
the temporal dimension).

The second layer can realize the computation depicted in
Algo 1. For every time step t, it enumerates all t′ > t and
computes the output based on

1. the events at t′ (represented as P (t′)
K+l−1 in Equation 1,

concretely the (Gq)(t′) in the Algo 1 example), and

2. the state of another event between t and t′ (represented
as

(
maxt≤t′′<t′ P

(t′′)
K+l−1

)
in Equation 1, concretely the

∀t′′ ∈ [t, t′). p(t′′) in the Algo 1 example).

From the perspective of First-Order Linear Temporal Logic
(FO-LTL), stacking multiple temporal reasoning layers en-
ables us to realize FO-LTL formulas such as:

p1 U p2 U p3 U · · · U pk,

which is interpreted as p1 holds true until p2 becomes true and
p2 holds true from that until p3 becomes true · · · , and

Fp1 XF p2 XF p3 XF · · · XF pk,

which is interpreted as p1 eventually becomes true and after
that p2 eventually becomes true and after that · · · , and in addi-
tion, formulas with interleaved until and eventually quantifiers.
Here, XF is a composition of the neXt operator and the Finally
operator in LTL. Meanwhile, as described so far, TOQ-Nets
can only nest object quantification inside temporal quantifi-
cation, so it can represent always ∃x. q1(x) ∧ q2(x), but not
∃x. always q1(x) ∧ q2(x). This can be solved by interleaving
relational and temporal reasoning layers.

It is important to notice that, by using object and temporal
pooling operations together with trainable neural networks to
realize logic formulas with object and temporal quantifiers,
the idea itself generalizes to a broader set of FO-LTL formu-
las. We design TOQ-Nets to model only a subset of FO-LTL
formulas, because they can be computed efficiently (with only
O(T 2) space) and they are expressive enough for the type of
data we are trying to model.

3 Experiments
We compare our model with other approaches to object-centric
temporal event detection in this section, and include an ap-
plication of TOQ-Nets to concept learning over robot object-
manipulation trajectories in the supplementary material. The
setups and metrics focus on data efficiency and generalization.

3.1 Baseline Approaches
We compare TOQ-Nets against five baselines. The first
two are spatial-temporal graph convolutional neural networks
[STGAN; Yan et al. 2018] and its variant STGCN-MAX,
which models entity relationships with graph neural networks
and models temporal structure with temporal-domain convolu-
tions. The third is STGCN-LSTM, which uses STGCN layers
for entity relations but LSTM [Hochreiter and Schmidhuber,
1997] for temporal structures. The last two baselines are based
on space-time graphs: Space-Time Graph [Wang and Gupta,
2018] and Non-Local networks [Wang et al., 2018]. We pro-
vide details about our implementation and how we choose the
model configurations in the supplementary material.

3.2 Trajectory-Based Soccer Event Detection
We start our evaluation with an event-detection task in soccer
games. The task is to recognize the action performed by a
specific player at specific time step in a soccer game trajectory.

Dataset and setup. We collect training and evaluation
datasets based on the gfootball simulator*, which provides

*https://research-football.dev/

https://research-football.dev/


Model Reg. Few-Shot Full

STGCN 73.2±1.6 26.0±5.7 62.8±0.6

STGCN-MAX 73.6±1.5 28.6±5.0 63.6±0.7

STGCN-LSTM 72.7±1.4 23.8±5.9 61.9±0.6

Space-Time 74.8±1.5 31.7±6.1 65.2±0.6

Non-Local 76.5±2.4 45.0±6.3 69.5±2.4

TOQ-Net (ours) 87.7±1.3 52.2±6.3 79.8±0.8

Table 2: Results on the soccer event dataset. Different columns
correspond to different action sets (the regular, few-shot, and full
action sets). The performance is measured by per-action (macro)
accuracy, averaged over nine few-shot splits. The ± values indicate
standard errors. TOQ-Net significantly outperforms all baseline
methods on the few-shot action set.

a physics-based 3D football simulation. It also provides AI
agents that can be used to generate random plays. The simula-
tor provides the 3D coordinates of the ball and the players as
well as the action each player is performing at each time step.
There are in total 13 actions defined in the simulator, including
movement, ball control, trap, short pass, long pass, high pass,
header, shot, deflect, catch, interfere, trip and sliding. We ex-
clude header and catch actions, as they never appear in AI
games. We also exclude ball control and movement, since they
just mean the agent is moving (with or without the ball). Thus,
in total, we have nine action categories. We run the simulator
with AI-controlled players to generate plays, and formulate the
task as classifying the action (9-way classification) of a spe-
cific player at a specific time step given a temporal context (25
frames). For each action, we have generated 5,000 videos, ex-
pect for sliding, for which we generated 4,000 videos because
it is rare in the AI games. Among the generated examples,
62% (2,462 or 3,077) are used for training, 15% are used for
validation, and 23% are used for testing. Each trajectory is an
8-fps replay clip that contains 17 frames (about two seconds).
There is a single “target” player in each trajectory. The action
label of the trajectory is the action performed by this target
player at frame #9. We randomly split all actions into two
categories: seven “regular” actions, for which all game plays
are available, and two “few-shot” actions, for which only 50
clips are available during training.

Input features. Each trajectory is represented with 7 time-
varying unary predicates, including the 3D coordinate of
each player and the ball and four extra predicates defining
the type of each entity x: IsBall(x), IsTargetPlayer(x),
SameTeam(x), OpponentTeam(x), where SameTeam(x)
and OpponentTeam(x) indicates whether x is of the same
team as the target player. We also add a temporal indicator
function which is a Gaussian function centered at frame of
interest with variance σ2 = 25.

Results. Table 2 shows the result. Our model significantly
outperforms all the baselines in all three action settings, sug-
gesting that our model is able to discover a set of useful fea-
tures at both input and intermediate levels and use them to
compose new action classifiers from only a few examples.

Generalization to more players. Due to their object-
centric design, TOQ-Nets can generalize to soccer games
with a varying number of agents. After training on 6v6 soccer

games (i.e., 6 players on each team), we evaluate the perfor-
mance of different models on games with different numbers
of players: 3v3, 4v4, 8v8, and 11v11. For each action we
have generated, on average, 1,500 examples for testing. Ta-
ble 3 summarizes the result and the full results are provided
in the supplementary material. Comparing the columns high-
lighted in yellow, we notice a significant performance drop for
all baselines while TOQ-Net performs the best. By visualiz-
ing data and predictions, we found that misclassifications of
instances of shot as short pass contribute most to the perfor-
mance degradation of our model when we have more players.
Specifically, the recall of shot drops from 97% to 60%. In
soccer plays with many agents, a shot is usually unsuccessful
and a player from another team steals the ball in the end. In
such scenarios, TOQ-Net tends to misclassify such trajecto-
ries as a short pass. Ideally, this issue should be addressed
by understanding actions based on agents’ goals instead of
the actual outcome [Intille and Bobick, 2001]. We leave this
extension as a future direction.

Generalization to temporally warped trajectories. An-
other crucial property of TOQ-Nets is to recognize actions
based on their sequential order in the input trajectory, instead
of binding features to specific time steps in the trajectory. To
show this, we test the performance of different models on time
warped trajectories. Each test trajectory has a length of 25, and
each trajectory is labeled by the action performed by the target
player at any time step between the 6-th and 19-th frame. We
ensure that the target player performs only one action during
the entire input trajectory. Thus, the label is unambiguous. The
results are shown in Table 3. Specifically, our test set consists
of 25-frame trajectories, and the action may occur at anytime
between the 6th and the 19th frame. By comparing rows with
and without time warping, we notice a 60% performance drop
for STGCN, STGCN-MAX, and STGCN-LSTM. In contrast,
TOQ-Nets still have reasonable performance. Note that Space-
Time and Non-Local model have almost no performance drop
against time warping because they are completely agnostic to
temporal ordering.

3.3 Extension to Real-World Datasets
The proposed TOQ-Net can also be extended to other real-
world datasets. These examples further illustrate the robust-
ness of TOQ-Net to temporal variations in activities.

Toyota Smarthome. Toyota Smarthome [Das et al., 2019]
is a dataset that contains videos of humans performing every-
day activities such as “walk”, “take pills”, and “use laptop”.
It also comes with 3D-skeleton detections. There are around
16.1k videos in the dataset, and 19 activity classes. The videos’
length varies between a few seconds to 3 minutes. We sub-
sample 30 frames for each video. We split frames into training
(9.9k), validation (2.5k), and testing (3.6k). We treat human
joints as entities. The input is then the position of joints, the
velocity of joints, limb lengths, and joint angles. We evaluated
our model and STGCN on a 19-way classification task. We
also test model performance on time-warped sequences by
accelerating the trajectories by two times.

Our model achieves a comparable accuracy to STGCN on
the standard classification task: (42.0% vs. 43.0%). Impor-



Model 3v3 4v4 6v6 6v6 (Time Warp) 8v8 11v11

STGCN 40.7±1.0 (-40.4%) 63.2±4.9 (-7.4%) 68.2±2.8 52.8±7.0 (-22.6%) 55.4±3.3 (-18.8%) 44.4±2.1 (-34.9%)
STGCN-MAX 47.4±3.2 (-33.7%) 68.8±2.0 (-3.8%) 71.5±1.9 56.5±4.5 (-21.0%) 59.1±0.7 (-17.3%) 45.6±2.5 (-36.2%)
STGCN-LSTM 39.7±1.1 (-43.1%) 60.4±0.2 (-13.5%) 69.8±0.1 30.6±0.6 (-56.1%) 55.8±2.0 (-20.0%) 44.1±0.7 (-36.8%)
Space-Time 29.0±1.6 (-60.4%) 53.5±3.2 (-27.0%) 73.3±0.3 70.7±0.3 (-3.5%) 33.9±2.8 (-53.7%) 15.2±1.8 (-79.3%)
Non-Local 45.9±5.1 (-41.2%) 70.7±5.3 (-9.5%) 78.1±5.8 77.7±5.0 (-0.5%) 58.5±10.8 (-25.1%) 41.8±13.6 (-46.5%)
TOQ-Net 77.4±3.5 (-12.4%) 88.3±0.7 (-0.0%) 88.4±0.6 86.9±0.4 (-1.7%) 81.3±1.7 (-8.0%) 77.1±1.7 (-12.8%)

Table 3: Results on generalization to scenarios with more agents and temporally warped trajectories on the soccer event dataset. All models are
trained only on 6v6 games. The standard errors indicated by the ± signs are computed with three random seeds.

tantly, on the generalization test to time-warped sequences,
our model has only a 0.8% performance drop (41.2%), while
STGCN drops 10.7% (32.3%). This indicates that the temporal
structures learned by TOQ-Net improve model generalization
to varying time courses.

Volleyball Activity. The volleyball dataset [Ibrahim et al.,
2016] contains 4830 video clips collected from 55 youtube
volleyball videos. They are labeled with 8 group activities
(e.g. “left spike” and “right pass”). Each video contains 20
frames with the labeled group activity performed at the 10-
th frame. The dataset also includes annotations for players,
including the bounding box, the indicator of whether the player
is involved in the group activity, and the individual action such
as “setting”, “digging”, and “spiking”. We use the manual
annotations (processed by an MLP) as the input features. We
train models to classify the video into one of the eight group
activities, following the original split, i.e., 24, 15, and 16 of
55 videos are used for training, validation, and testing.

On the standard classification task, TOQ-Net achieves a
comparable performance with STGCN (73.3% vs. 73.6%).
When we perform time warping on the input sequences,
STGCN’s performance drops by more than 25.0% (39.5%
on temporally shifted trajectories and 48.6% on 2× quick mo-
tion trajectories), while our model drops only 3% (70.3% on
temporally shifted trajectories and 70.7% on quick motion
trajectories). This again shows the generalization ability of
TOQ-Net w.r.t. varying time courses, and the robustness of
learned temporal structures.

4 Related Work
Action concept representations and learning. First-order
and linear temporal logics [LTL; Pnueli 1977] have been
used for analyzing sporting events [Intille and Bobick, 1999;
Intille and Bobick, 2001] and activities of daily living [Tran
and Davis, 2008; Brendel et al., 2011] in logic-based reason-
ing frameworks. However, these frameworks require extra
knowledge to annotate relationships between low-level, primi-
tive actions and complex ones, or performing search in a large
combinatorial space for candidate temporal logic rules [Pen-
ning et al., 2011; Lamb et al., 2007]. By contrast, TOQ-Nets
enable end-to-end learning of complex action descriptions
from sensory input with only high-level action-class labels.

Temporal and relational reasoning. This paper is also re-
lated to work on using data-driven models for modeling re-
lational and temporal structure, such as LTL [Neider and
Gavran, 2018; Camacho et al., 2018; Chou et al., 2020], Logi-

cal Neural Networks [Riegel et al., 2020], ADL description
languages [Intille and Bobick, 1999], and hidden Markov mod-
els [Tang et al., 2012]. These models need human-annotated
action descriptions and symbolic state variables (e.g., pick up x
means a state transition from not holding x to holding x), and
dedicated inference algorithms such as graph structure learn-
ing. In contrast, TOQ-Nets have an end-to-end design, and
can be integrated with other neural networks. People have also
used structural representations to model object-centric tem-
poral concepts with graph neural networks [GNNs; Yan et al.
2018], recurrent neural networks [RNNs; Ibrahim et al. 2016],
and integrated GNN-RNN architectures [Deng et al., 2016;
Qi et al., 2018]. TOQ-Nets use a similar relational representa-
tion, but different models for temporal structures.

5 Conclusion and Discussion
The design of TOQ-Nets suggests multiple research directions.
For example, the generalization of the acquired action concepts
to novel object kinds, such as from opening fridges to opening
bottles, needs further exploration. Meanwhile, TOQ-Nets are
based on physical properties, e.g. 6D poses. Incorporating
representations of mental variables such as goals, intentions,
and beliefs can aid in action and event recognition [Baker et
al., 2017; Zacks et al., 2001; Vallacher and Wegner, 1987].

In summary, we have presented TOQ-Nets, a neuro-
symbolic architecture for learning to describe complex state se-
quences with quantification over both entities and time. TOQ-
Nets use tensors to represent the time-varying properties and
relations of different entities, and use tensor pooling operations
over different dimensions to realize temporal and object quan-
tifiers. TOQ-Nets generalize well to scenarios with varying
numbers of entities and time courses.
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