
On the Nature and Origin of Intuitive Theories:

Learning, Physics and Psychology

by

Tomer David Ullman

B.Sc., Physics and Cognitive Science, Hebrew University (2008)

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Cognitive Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015

c© Massachusetts Institute of Technology 2015. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Brain and Cognitive Sciences

January 15, 2015

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joshua B. Tenenbaum

Professor
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matthew Wilson

Sherman Fairchild Professor of Neuroscience and Picower Scholar,
Director of Graduate Education for Brain and Cognitive Sciences



2



On the Nature and Origin of Intuitive Theories: Learning,

Physics and Psychology

by

Tomer David Ullman

Submitted to the Department of Brain and Cognitive Sciences
on January 15, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Cognitive Science

Abstract

This thesis develops formal computational models of intuitive theories, in particular
intuitive physics and intuitive psychology, which form the basis of commonsense
reasoning. The overarching formal framework is that of hierarchical Bayesian models,
which see the mind as having domain-specific hypotheses about how the world works.
The work first extends models of intuitive psychology to include higher-level social
utilities, arguing against a pure ‘classifier’ view. Second, the work extends models
of intuitive physics by introducing an ontological hierarchy of physics concepts, and
examining how well people can reason about novel dynamic displays. I then examine
the question of learning intuitive theories in general, arguing that an algorithmic
approach based on stochastic search can address several puzzles of learning, including
the ‘chicken and egg’ problem of concept learning. Finally, I argue the need for a
joint theory-space for reasoning about intuitive physics and intuitive psychology, and
provide such a simplified space in the form of a generative model for a novel domain
called Lineland. Taken together, these results forge links between formal modeling,
intuitive theories, and cognitive development.
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Chapter 1

Introduction

“The only innocent feature in

babies is the weakness of their

frames; the minds of infants are far

from innocent.” — Augustine of

Hippo, Confessions

Even before we know the world, we know about the world. From birth, we have

expectations about objects, magnitude, space and action. This core knowledge forms

our basic intuitions. And yet, cognitive science does not have a formal theory of these

basic intuitions. These are not trivial statements, they are hard-won recognitions es-

tablished over the past decades through experimental work with infants, children and

adults. By looking at what infants find surprising and what they prefer, researchers

amassed a wealth of knowledge about what infants expect and know: objects fol-

low smooth paths and don’t wink in and out of existence; agents act efficiently to

achieve goals; numbers can be added and subtracted, and so on. Despite these gen-

eral principles, there is no explanatory computational theory to unite and explain
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the separate strands of findings. The state of the field resembles pre-Newtonian

“Ellipsin fieri

orbitam planetæ”

(Kepler, Epitomes

astronomiae

Copernicanae)

astronomy, a period when people rigorously collected a copious amount of data and

expressed general qualitative principles about heavenly motions, but lacked a formal

quantitative and principled account. The difference between data-based generaliza-

tions and formal theory is the difference between saying “Planets follow elliptical

paths with the sun at a foci” and “F = m · a and gravitational works in an inverse

square way, therefore the planets will move thus”.1

At about the same time that the ‘core knowledge’ account of infant knowledge

was crystallizing, computational cognitive science was developing new ways to think

about thinking. Structured generative models emerged as influential tools for cap-

turing the computations of the human mind. Following the theory-based approach

in cognitive science [123], these new tools view the mind as reverse-engineering

the world, searching for theories and causes that explain perception. In the pre-

Newtonian era we find ourselves, this formalism is a bit like calculus: an important

computational advance in itself, but hard work is needed to link it up with the real

world.

In this dissertation, I present several such links between computational theories

and intuitive theories. The dissertation is concerned with the common questions

of researchers in both AI and development, namely representation and learning, or

“what we know” and “how we get more of it”. On the question of representation,

I focus on the core domains of intuitive physics and intuitive psychology, and the

connections between them. On the question of learning, I propose that many learning

challenges are best addressed at the algorithmic level of modeling, and suggest such

an algorithm, drawing parallels between the dynamics of the algorithm and the

1This is not for lack for trying. There have been attempts to formalize cognitive development,
as the historical section shows, and these attempts are ongoing.
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way children learn. Throughout the dissertation I present empirical, theoretical and

philosophical support for the particular claims put forward. But I also allow myself

to speculate on what models should be like, with the hope that the reader will forgive

or even enjoy such speculations.

The rest of the introduction is meant to equip the reader with the background,

terms and details necessary for their journey through the thesis itself. My hope is

that by the end of the introduction, the reader will be able to answer for themselves

on a basic level: “What is the relationship between cognitive modeling, intuitive

theories and cognitive development? What do we know about child development

and intuitive theories today, and what is a good formal account of that? What’s the

alternative?”

I first review the historical exchange between computational models and cognitive

development (Section 1.1). Next, I describe current influential views in development

including “Core Knowledge” and the “Theory Theory” (Section 1.2), and broadly

what we think infants know about the core domains of agents and objects. Building

on this, I ask what are the criteria for a formal account of infant core knowledge in

principle. In Section 1.3 I give an overview of a formalism that matches these crite-

Roadmap of introria: hierarchical Bayesian models (HBMs), and explain their connection to intuitive

psychology and intuitive physics. Section 1.4 introduces the distinction between a

computational level and an algorithmic level analysis, and uses the distinction to

explore an oft-cited criticism of HBMs: Even assuming these models get the rep-

resentation right, how can they learn anything truly ‘new’? Finally, Section 1.5

presents an approach based on cues, features or rules, that will serve – in various

guises – as the main foil for the HBM account.

Also, here is a brief outline of the structure and contributions of the next chap-

ters: Chapters 2-3 focus on the core domains of agents and objects. Chapter 2,
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motivated by experiments with pre-verbal infants, extends a formalism that models

action understanding as ‘inverse planning’ to include social goals such as helping and

hindering, provides strong evidence against a cue-based account and argues for an

innate or early-developing mentalistic apparatus. Chapter 3 builds on the proposal

Roadmap of thesis
that intuitive physics is based on a mental ‘physics-engine’, asking: what parts of

this engine can be learned, and how? Chapter 4 tackles the question of learning, and

proposes that by focusing on the algorithmic level of structured generative models –

particularly on stochastic search algorithms – we can address several philosophical

and psychological puzzles about how children learn. Finally, Chapter 5 examines the

challenge of cross-core-domain connections, going back to agents and objects and

proposing a generative account of how people reason when common-sense explana-

tions require understanding something about both psychology and physics.

1.1 Formal Models and Child Development, a Brief

History

Formal modeling of what children know and how they develop is not a new suggestion.

The changes in the field of artificial intelligence have often paralleled, influenced, and

were influenced by changes in the field of child development. This is hardly surpris-

ing, as both fields are mainly concerned with the representation and acquisition of

knowledge: What it is, and how we get more of it.

Even before the proposed equivalence of the mind with computation – the ‘driving

metaphor’ of the field of cognitive science [134] – researchers in the nascent fields

of child development and computation were seeing parallels. Prior to the ‘cognitive

revolution’, Piaget was examining the child’s mind in terms of logical symbols, mental
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models and mental operations [129]. Around the same time, Turing suggested that We cannot expect

to find a good child

machine at the first

attempt

– Alan Turing

rather than simulating the adult mind, we might be better off trying to recreate the

mind of the child and teaching it so as to produce the adult mind [182].

During the mid 20th century, researchers in proto-AI and psychology were strug-

gling with similar questions: How much knowledge is there at the beginning? How

is knowledge represented? How is new knowledge learned?

On the question of the initial state of knowledge, Turing considered the child’s

mind a notebook with ‘rather little mechanism, and lots of blank sheets’ 2. In this, Give me a child,

and I’ll shape him

into anything

– B.F. Skinner

Turing’s outlook was in many ways similar to the dominant behaviorist view in the

United States at the time, positing little initial structure and thinking that some

rewarding or punishing signal would allow the child program to correctly learn new

knowledge [182]. Turing, Piaget and Skinner could all be seen as similar in their

relatively empiricist belief (or hope) that the initial state of the child is close to

a blank notebook / sensorimotor machine / unconditioned subject. Such a view

contrasted with the ideas researchers like Chomsky [30], who argued for the innate

existence of conceptual content (such as grammatical rules).

As for the question of how knowledge is represented, Turing (and constructivists

like Piaget) suggested the child program discovers some formal structure, a sub-

program or set of mental operations. Such mental, inner structures were denied by

the behaviorist tradition.

Finally, regarding the question of new knowledge, computational models were

called upon early on to address this challenge, be it models of operant conditioning,

assimilation or schema transformation [162, 129]. It is interesting – though not

2Or rather, Turing ‘hoped’ this was the case, as it would be much easier to program such a
machine, and perhaps anticipating the difficult task of uncovering innate structures should those
exist.
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surprising – that a “short blanket” problem occurred when trying to solve both the

issues of representation and learning. A short blanket covers either the head or the

feet, but not both. Simple learning rules, such as the Rescorla-Wagner learning

rule, were easy to implement and study, but could not account for rich knowledge

[136, 120]. Rich knowledge, captured by representations such as grammar, was either

assumed as given, or was not provided with an implementable formal treatment (e.g.

Piaget’s theories [129]).

During the rise of the cognitive sciences, the information processing approach to

modeling was highly influential on cognitive development [98, 161]. When the field

of cognitive science was focusing on symbolic logic [126], learning was seen as the

acquisition of new ‘rules’ for reasoning about domains. Much as an intelligent pro-

gram could acquire new ‘rules’ for achieving a goal-state in a toy-world, children and

adults were modeled as learning new logical-rules, and experiments on explicit rule

learning became popular [161]. Both children and adults were modeled as acquiring

new rules within a production system, but development was seen as a program-

transformation going from one production system to the next [161]. This viewPerhaps we would

settle for a theory

of something less

than the whole

child

– Herbert Simon

suggested two types of programs necessary to describe development: many ‘stage-

programs’ that captured the mental state of a child at each developmental stage,

and one ‘transformation program’ that takes as input a stage-program and outputs

a different stage-program. This distinction, made by Simon, was influenced both by

Turing (the mind as a program) and by Piaget (separate stages of development).

With the advent and popularization of connectionist architectures in the 1980’s,

it was proposed that development was the simple ongoing process of adaptive weight

change in a neural network. What was previously seen as the discrete acquisition

of a new basic understanding of some concept or the relationship between concepts

[114, 139, 117, 138]. (e.g. “If there is more weight on one side, an apparatus will

Input!

Output!

Hidden!
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tilt towards that side”), was now seen as coming about through quick and drastic

weight shifting when enough data was supplied. Nowhere in the network was there

an explicit concept, or rule, or transformation. Development and learning were now,

to some degree, equivalent. Much as the network can adjust weights to learn a new

word in French, it can adjust weights to recognize new objects, or to ‘realize’ that

both weight and distance are important in predicting the movements of a balance

scale.

Around the same time that parallel distributed processing was coming into fash-

ion, both developmental researchers and AI researchers became concerned with ques-

tions of causal reasoning and uncovering the ‘true’ structure of the world. In AI,

Judea Pearl was developing Causal Bayes Nets [127], which aim at modeling the

underlying structure that led to an observation, rather than just finding correlations

between observations. Causal Bayes Nets do this by combining explicit predicates

If the grass is wet

and the sprinkler is

on, did it rain? A

deep question for

causal reasoning

(such as ‘symptom’ or ‘disease’) with probabilistic Bayesian inference, and with a no-

tion of ‘intervention’ that isolates causal influences. Independently of this research,

researchers in development were proposing that children concern themselves with

finding the ‘true’ underlying structure of events, building theories and revising them

like scientists [69]. This ‘theory theory’ view is discussed in the next section, and

the historical review is far too brief to do justice to the Causal Bayes Net approach

(much as it is short on justice towards connectionism). For my purpose, the takeaway

is that Pearl’s research on causality had an important influence on developmental

research beginning in the late 90’s [65, 68], when some researchers in computation

and development began seeing Causal Bayes Nets as the formal nuts and bolts of

the theory-theory. Rather than learning a “rule” relating predicates, or adjusting

weights in a connectionist network, children were seen as distinguishing, comparing

and choosing among different causal networks for explaining a situation (such as the
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workings of a ‘blicket-detector’).

All of these views (logical rule learning and information processing, developmental

stages and cognitive architectures, connectionist networks and dynamical systems,

Bayes nets and structure learning, and others) continue to be influential and active

avenues of research. By reviewing them as history I do not mean they are historical,

but at this point I want to turn to recent advances in both computational and

developmental cognitive science. Just like previous parallel advances, these too have

something to say to one another.

1.2 Theories of Theories - Current Developmental

Views

What does current experimental research tell us about Turing’s vision of the child

as an empty notebook? What is the amount of content, what is the language, and

how do children go about filling it with new ideas?

Regarding the questions of knowledge representation and acquisition, a powerful

set of ideas mentioned in the previous section was that of ‘theory theory’ and ‘theWe would say, not

that children are

little scientists but

that scientists are

big, and relatively

slow, children.

– Alison Gopnik

and Henry

Wellman

child as scientist’ [24, 22, 123, 66, 69, 67, 152, 154, 193, 73]. On this view, children

can evaluate and adopt rich structures of knowledge that go far beyond the sparse

data they’re given, similar to the way a scientist can propose general principles

from limited observations and evaluate them. The ‘theory theory’ posits that the

knowledge itself is represented as something like a scientific theory. The ‘child as

scientist’ view adds that the process of acquiring new knowledge is itself science-like,

in that children conduct experiments and design interventions [165], search for new

data when needed, isolate variables [32], understand when evidence is confounded
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[153], are sensitive to how the data was generated [73], and so on.

Regarding the question of ‘amount of initial knowledge’, the empirical answer

uncovered by researchers in child development over the past decades is “Turing’s

notebook is not empty, but it is not overly cluttered”. Researchers in cognitive

development have discovered infants and young children understand several abstract Opinions may vary

as to the complexity

which is suitable in

the child machine.

– Alan Turing

principles which are present early on, across cultures, and shared with non-human

animals [168, 169, 5, 194, 34, 128, 155, 4, 24, 27]. These principles are organized into

systems of core knowledge for specific domains, with infants maintaining qualitatively

different expectations for entities classified under different ‘core’ domains, such as

geometry, number, physics, sociology and psychology.

Thus Turing’s notebook might actually be several notebooks, filled with chapter

headings, outlines and cross-references, even if they do not contain much specific

propositional knowledge. The specific focus of this dissertation will be on intuitive

physics and intuitive psychology, the ability to reason productively about mechanical

objects and goal-directed agents, and so I provide a bit more detail on those below:

Intuitive Physics As early as 2 months and possibly before, infants already

posses some notion of object persistence, continuity and cohesion. They expect

objects to follow relatively smooth paths, not wink out of existence, and not act at

a distance [168]. Infants also do not expect drastic changes to physical properties

(although what determines a physical property and whether size, color or shape

matter is subject to some debate). Infants have a notion of object solidity [169],

expecting objects not to pass through one another. Many of these expectations are

limited to ‘cohesive’ objects, not applying to things such as sand piles. Over the

months following birth, infants develop more adult-like intuitions regarding physical

objects. They have a notion of gravity, expecting released objects to fall down [110,

124], and slowly develop ideas regarding inertia (e.g. objects should not simply stop
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for reason) and support [81] (e.g. they know what configuration prevents objects from

falling down). Infants can also predictively look and reach towards moving objects,

although they have a more difficult time reaching when these objects go behind

occluders [80]. By 5 months, they have already developed different expectations

about solid and non-solid objects [80].

Intuitive Psychology There is a wealth of experiments showing that pre-verbal

infants attribute agents with goals, morals and efficient planning. Young infants

can encode goals, and expect agents to act efficiently to achieve goals, subject to

environmental constraints [168, 34, 33]. They distinguish first anti-social agents from

neutral agents, and then pro-social agents from both, preferring pro-social agents that

help others over neutrals, and neutrals over anti-social agents that hurt or hinder

others [94, 76, 75, 74]. There is some debate about how infants categorize agent and

non-agents. While perceptual features such as faces or eyes are useful, they are not

necessary [85]. Infants are also sensitive to self-propelled motion [146, 132], efficient

movement towards goals given possible actions, and social responsiveness [33, 52].

The ideas of core-knowledge and the ‘child as scientist’ impose several constraints

on what a formal account of human development should look like. Both ideas are

concerned with theories of how the world works, the hidden underlying causes that

produce observations. How well do the computational accounts in the historical

review capture these ideas? Connectionist networks, for the most part, are not

concerned with building in core knowledge, nor with anything like a theory. Systems

of rules have more the structure of a theory, but are perhaps too brittle, and fail to

account for learning and changing entire systems of concepts a-la Kuhn [101]. Of

the frameworks reviewed, Pearl’s Causal Nets come closest to the notion of finding

structured hypotheses to explain the data, but they too are constrained and cannot
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account for higher-level aspects of a child-like theory3. It is equally unclear how a

Bayes Net could account for core knowledge principles like ‘objects follow smooth

paths’ and ‘agents have goals’.

In the next section, I turn to a computational framework based on recent advances

in computational modeling [50, 142]. This framework combines the strengths of

the symbolic and statistical traditions into structured probabilistic models that use

Bayesian statistical inference. In cognitive science in particular it has led to a better

understanding of high-level human cognition [178], and is currently best-suited to

rise to the challenges presented by advances in developmental research.

1.3 Hierarchical Bayesian Models over Rich Struc-

tures

The following framework is based on the idea that people reason about by the world

by considering how hypotheses can account for data. On this proposal, a reasoning

system evaluates a hypothesis h about how the world works, by taking into account

the observed data d, and some prior assumptions, background knowledge, beliefs and

constraints given the domain theory T . A hypothesis about the world can be about

the goal of an agent, the existence or shape of an unseen obstacle, the underlying

force law of some dynamics, the causal mechanism responsible for a toy working in

some way, and so on.

The degree of belief that a rational learner should assign to some hypothesis is

3Consider for example a theory of illness that posits diseases as the cause of symptoms. A Causal
Nets story might imagine children hypothesizing various different causal nets until they hit upon
the right one for particular diseases and symptoms and understanding the specific causal direction,
but nowhere in this learning process or final outcome is there the basic theoretical statement “there
are two types of things in the world, diseases and symptoms, and diseases cause symptoms” [178].
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equivalent to the posterior probability of that hypothesis, calculated using Bayes’

rule:

P (h|d, T ) ∝ P (d|h) · P (h|T ). (1.1)

This equation captures the way beliefs are updated as the result of an interplay

between the prior knowledge of an intelligent system (adult, child, machine), and the

need to account for the data. The likelihood term P (d|h) assesses how likely the data

is given the hypothesis, while the prior probability P (h|T ) indicates how ‘reasonable’

the hypothesis is, independent of the data. Children’s mental development can then

be seen as a process of theory revision - strong assumptions about how the data was

generated can be changed given conflicting data.

This formal generative approach is expanded by specifying multiple levels of a

‘theory hierarchy’ (and giving us Hierarchical Bayesian Models). Domain theories

then constraint models of particular scenarios, and domain theories are in turn con-

strained by higher and more abstract principles [92].

Arthur: Camelot!

Patsy: It’s only a

model!

Arthur: Shh!

(Monty Python and

the Holy Grail)

It is a pretty picture, but it is only a sketch of a general framework, and the

rational belief updating mechanism (Eq. 1.1) is only the basic skeleton of inference.

The real challenges – the flesh and nerves – are these:

Explain how the world works by specifying the actual theory structure of the

hypothesis spaces

Explain how learning works by giving rational, realistic learning algorithms for

exploring these spaces

To better understand the first challenge, consider how the HBM formalism might

capture the intuitive theory of psychology. The observed data d we want to explain

32



are series of Actions (“Why did John open the box?”), while the unobserved things

we use as explanations are mental constructs such as Beliefs and Goals. How

do we compute P (Goals, Beliefs|actions)? Simple, says the Bayesian updating

mechanism:

P (Goals, Beliefs|Actions) ∝ P (Actions|Goals, Beliefs) ·P (Goals, Beliefs) (1.2)

But how do we get the likelihood of actions given goals and beliefs, or the prior on

goals and beliefs? That is the hard part. The ‘theory’ of agents is that they act

efficiently in order to achieve goals. This can be formalized as a rational planning

model, the sort of thing developed for economics, robotics and artificial intelligence

[133, 9]. Imagine for example a robot with a planning procedure. If the robot is told

its goal is to get an apple (high utility for states where it has the apple), and the

robot believes the apple is in a box (high probability on states where the apple is

in the box), then the robot can use a planning procedure to produce a sequence of

actions that will get it to its goal (open the box and get the apple). So, the planning

procedure gives us the probability of taking certain actions given goals and beliefs,

which is the likelihood we were after.

By assuming that this is how people work, we can explain their actions. If we see

someone reaching for a box and grabbing an apple, we can say that they probably

like eating apples, and that they believed the apple is in the box. We can incorporate

different knowledge into this story, too: if we think John hates apples, we might think

John believed there was something else in the box.

Chapter 2 expands on ‘intuitive psychology as inverse planning’. The main take-

away of the previous paragraphs is that while HBMs (Eq. 1.1) can formalize the idea

of children rationally updating theories, they are not the end of the story. One still
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has to work hard to specify the right theories, their structure, and their basic units.

This is a challenge, but it is a challenge that HBMs and cognitive development can

work to solve jointly.

What about the second challenge mentioned earlier, that of learning? This de-

serves its own section.

1.4 Learning and the Algorithmic Level

Even if we built the right formal theories for each core domain using findings from

core knowledge, we still would not be happy 4. We would still have to explain how

learning new theories happens. In this section I lay out common learning-based

objections to the HBM formalism, and point in the direction of a solution that will

be developed in Chapter 4.

On some level, Eq. 1.1 explains how learning happens: A rational agent should

shift probability mass on theories as new data comes in, taking into account both

the fit to data and theory simplicity. But on a different level, this is not a satisfying

statement. The objections to this ‘explanation’ usually fall into one of the following

inter-related groups:

The Objection of Limited Thought “HBMs are quite successful in capturing

some of the reasoning of children and adults, but they only succeed because

the hypothesis spaces you pre-defined is small. You can capture children mov-

ing from theory A to theory B, by assuming the hypothesis space is limited to

A and B and that as data comes in more probability is placed on theory B,

but children can also potentially think of C, and D, and an infinite number of

4Actually we would be extremely happy. But we wouldn’t be satisfied.

34



things that don’t go into your hypothesis space at all.”

The Objection of Infinite Incredulity “So you can define very large or infinite

hypothesis spaces. But your view of learning is then a shifting of probability on

a very large or infinite space. How can you honestly suggest children and adults

have parallel access to each hypothesis in such spaces? Children probably

consider at most only 2 or 3 options at a time.”

The Objection of Mad Nativism “If you define the entire space of hypotheses,

you’re not actually learning anything new, you’re just testing and confirming

things you already new. This is Mad Dog Nativism. Are you honestly sug-

gesting that the move from Newtonian Physics to General Relativity should

be captured by considering all the possible theories of physics, and saying that

Einstein shifted probability mass to General Relativity? If General Relativ-

ity was already a possible thought to consider, in what meaningful sense did

Albert come up with anything new?”

These are reasonable objections and concerns that need to be addressed. The

first objection is addressed by allowing for larger hypothesis spaces, but then one

runs into the second objection. I said that Eq. 1.1 is the Bayesian learning story ‘on

some level’. Usually the term ‘on some level’ is a figure of speech, but in this case it

can be made more precise. According to the Marr-Poggio proposal, we need to think

about cognitive systems using three different levels of analysis: The computational,

the algorithmic, and the implementation [112]. The computational level defines

what the task of the system is, the algorithmic level specifies how representations

are manipulated to achieve the task, and the implementation level gives the physical

realization of the algorithm. There are usually many algorithms that can solve a

given task, and many implementations for a given algorithm.
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The previous section described HBMs at the computational level: The task of the

mind is to reverse-engineer the structure of the world, aided by Bayesian inference.

This is the ‘level’ of Eq. 1.1, and this is the level that the objections are aimed

at. But the objections can be (mostly) answered by referring to the algorithmic

level. The Objection of Infinite Incredulity scoffs at parallel access to large spaces,

but an intelligent machine has no more parallel access to these spaces than children

or adults do, and yet computational researchers are able to do inference over such

spaces. They do it by using algorithms to implement the inference, algorithms that

usually consider only a few hypotheses at a time and are prone to backtracking.

Such algorithms only approximate the ideal level, and their dynamics are not that

of an ideal rational process. They are rational approximations, motivated by the

underlying theory expressed at the computational level.

Therefore, it might be better to equate the learning process of a child or adult

with the process of a rational algorithm searching through a space of theories. This

suggestion also addresses to some degree the Objection of Mad Nativism. By ne-

glecting the algorithmic level the Objection of Mad Nativism is true, but it is true in

an uninteresting way. It is similar to stating that a person that commands the gram-

mar of the English language can never actually say or think anything new, because

the grammar defines an infinite space of utterances and sentences that are (in some

mathematical sense) ‘there’. On some level this is true, but it is an uninteresting

level. People can generate sentences by sampling from their grammar (their ‘space’

of sentences), and they can generate ideas and theories by sampling from their space

of thought.

Chapter 4 considers the algorithmic level of learning in more depth. In particular

it examines the similarities between a class of algorithms (known as Markov Chain

Monte Carlo) and the learning dynamics of children, and relates the algorithmic
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process to theories of conceptual change.

At this point I’ve presented current views coming out of development, and a gen-

eral outline of how a computational framework can make contact with them. At this

point a reader might raise a more general objection: Suppose these models provide

both a conceptual and behavioral fit to the current views of cognitive development

– which remains to be shown – what is the alternative? Can a formalism that as-

sumes much less mental machinery account just as well for the data? This challenge

appears in all the following chapters, and I address it in general in the next section.

1.5 Cues, Classifiers, Trees and Rules, and Other

Things that Probably Won’t Work

Can we do without all the mental modeling baggage? There’s certainly a long-

standing tradition that tries, which I’ll refer to as the Classifier-Based approach5.

Here is a compressed one-sentence summary of the Classifier-Based approach, lump-

ing together several strands of different research:

“Given that children and adults receive input X and produce output Y, find

something that can take in the properties of X to produce Y. ”

The Classifier-Based approach is different from Good Old Fashioned Behaviorism

in that the ‘output’ can be a mental state or percept. Think of a person seeing two

googly-eyed shapes colliding. Such a scene can produce in the person the following

mental sensations: That the two shapes are ‘agents’, that the first agent had the

‘goal’ of crashing into the other one, that this crash ‘caused’ the other one to move,

I

2

3

5This term is somewhat misleading, in that the tradition is broader than just classification.
But it’s useful to have a label, and Classifier-Cue-Rule-And-Similar-Things-Based approach is a
mouthful.
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that the first agent is is ‘heavier’, and so on.

Agency, goal, causality, mass. Behaviorism is loath to consider these mental

percepts as targets of research. But the Classifier-Based approach is quite willing

to consider them, going back at least to Michotte’s studies of the mental percept of

causality [119].

The Classifier-Based approach is different from a theory-based approach in that

its primary concern is with finding properties of the input to use for an input-output

mapping between the perceptual input and the mental output. For example, some

of the percepts of the previous example might be captured by the rule “If something

started from rest, then it is an agent” [145]. Or we might say that faces are a good

cue for agency. Similarly, we might say that people have a heuristic such that if an

object’s post-collision velocity is greater than its pre-collision velocity, people perceive

that object to be lighter [179]. We might posit innate perceptual analyzers that

trigger the sensation of causality when the motion of one shape is followed by the

motion of a second shape without a spatio-temporal gap [119]. We could also build

decision trees that chain together a bunch of yes-no questions about the properties

of the scene to produce the mental output [3].

These proposals ignore (or deny) any underlying theory connecting the input and

output. We don’t need an understanding of how causality works to classify a scene

as belonging to an instance of ‘A caused B to move’. We don’t need a theory of

agency – with its goals, beliefs, plans, intentions – to classify A as ‘a bad guy’. Once

this is accepted, the task of research is then to uncover the relevant features and cues

for any given situation (e.g. do velocity and angle play a role in mass judgment, or

just velocity?), and to mark the borders of the perceptual analyzers and rules (e.g.

at what point do spatio-temporal gaps nullify the feeling of causality in collision

events?).
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What then of development? The Classifier-Based approach is concerned with

finding the long list of various innate cues, classifiers, heuristics and analyzers present

from birth. Some avenues of research then suggest how new rules and decision-nodes

can be acquired, accounting for shifts in infant judgments as they grow older [159, 3].

The approach is supported by experimental evidence and methodological sim-

plicity. Many mental percepts appear fast, automatic, immune to experience and

present from birth (Chapters 2, 3 and 5 discuss this in more detail). Also, if the

Classifier-Based approach can explain a mental judgment just as well as a theory-

based one, it should be preferred because it posits fewer entities.6. And yet this

approach is incomplete.

I don’t mean to deny the reality of cues, classifiers, heuristics and so on. People

from infancy onwards do seem to have special fast detectors on the lookout for aspects

of physics and psychology (or “mechanical and social causality” [143, 146]). But they

cannot be the whole story. This statement is explored in the rest of the thesis, and

the arguments are broadly these:

1. Our intuitive knowledge can reckon with an infinite number of questions, con-

tingencies and scenarios, but any new question might require a new feature or

cue or rule. The ‘simplicity’ of the Classifier-Based approach collapses under

the sheer number of features to consider. For example, we need separate cues

to answer how a tower will fall, in what direction it will fall, and how it will

6For example, suppose the two approaches try to explain how young children know an agent
moving towards a location has that location as its goal. The theory-based approach might posit
that young children have a mental model of what agents are like: Agents can plan to achieve goals,
they have some belief about where the goal is, and they take efficient series of actions to get to
their goals. The Classifier-Based approach might counter with ‘IF a shape started from rest and
is moving towards an object, THEN that object is its goal’, or ‘the shrinking distance between
an agent and an object is a cue that the object is the agent’s goal’, or simpler still ‘the shrinking
distance is a cue that can predict in the future the shape will move towards that object’.
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scatter , while a single theory-based model can answer all of these and a large

number of other questions as well [12].

2. The same cue or feature or rule can lead to different mental states, and different

cues could lead to the same state, depending on the situation. For example,

moving someone in the direction of their previous motion seems a useful cue

for ‘helpfulness’, but that action could result in a person being pushed off a

cliff. Similarly, being ‘helpful’ might sometimes require us to move towards

someone, and sometimes further away.

3. We don’t yet have a formalization of core knowledge, but its principles are

not stated in anything like a cue-based form [168]. The idea that ‘agents act

efficiently to achieve goals’ is a proto-theory of how agents work, and a rule

such as “IF something acts efficiently to achieve goals THEN it is an agent”

is simply begging the question. Similarly, the idea that ‘objects should follow

smooth paths and maintain cohesion’ is a proto-theory of how physical objects

work, not a statement about the right cues for detecting physical causality.

Classifiers are real, and important. They might be fast ways of focusing on a

small part of a hypothesis space. But they don’t replace hypotheses of how the

world works.
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Chapter 2

Help or Hinder∗

What is hateful to you, do not do to

your fellow. This is the whole

Torah, and the rest is commentary,

go and learn. — Rabbi Hillel the

Elder, Talmud Bavli

2.1 Introduction

Suppose a person suddenly finds herself on board the ship of Odysseus, just as it

draws near the island of the Sirens. Unaware of the Greek classics, she watches in

horror as Odysseus is bound hand and foot to the ship’s mast with tight ropes, hears

him yelling and begging to be set free. Rather than listening to their king, the

The Sirens,

stamnos vase,

480-470 BCE

men add more cords and draw the ropes tighter. This person would probably think

∗Joint work with Owen Macindoe, Chris Baker, Owain Evans, Noah Goodman, and Josh Tenen-
baum
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Odysseus’ sailors are sadistic brutes. But how quickly she would change her mind if

she knew the disastrous fate of those lured by the Sirens’ call [103].

While this example is fanciful, people constantly encounter similar situations -

situations requiring them to think about the social intentions driving the actions of

their peers, their friends and enemies. As a more prosaic example, consider a child

whose mother just slapped her wrist after she reached for a hot stove. What should

the child make of the situation? Is the mother intending to hurt, or warn? The child

might reasonably expect the mother is trying to help her, much like in the past, and

so reaching for a hot stove is dangerous. Compare this to a case where an older

sibling just hit the child, and instead of a hot stove the child reached for a shiny new

toy. In this case the child would probably realize something about the preferences of

her brother, rather than conclude that the new toy is dangerous.

Social inferences are fast, intuitive and robust. They happen automatically, with

people reading social meaning into even extremely impoverished visual displays: A

short video of bland geometric shapes moving in a 2D world causes adults to spon-

taneously attribute to these shapes a host of aims and intentions [79]. Some of

the attributed goals are simple, like reaching an object or a location. But people

also attribute complex social goals, such as helping, hindering or protecting another

agent. Recent studies suggest that not only adults, but also pre-verbal infants make

complex social goal attributions when looking at simple displays of moving shapes

[143, 100, 76], or watching puppets interact [75, 74]. Reasoning about social behavior

thus seems early-emerging and universal, and was even suggested as a candidate core

knowledge system [168].

How do people make these inferences? What is the structure of knowledge that

accounts for this kind of understanding? Is this knowledge even structured in any

high-level sense? One approach sees this knowledge as emerging from the physical
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and perceptual cues of the observed stimuli. On this view, the visual system auto-

matically uses perceptual cues to reconstruct the social nature of objects and scenes,

just as it reconstructs their three-dimensional nature [147]. Advocates of this ap-

proach point out the rapidity and robustness of goal attribution, arguing that these

require an ‘automatic’ inference built on visual perception, without the need for me-

diation from higher cognition. This “Cue Based” approach is present in computer

science and machine learning, as well as psychology and neuroscience. In computer

science, some researchers have focused on identifying useful features in the visual

scene that will allow them to automatically categorize different motions into con-

ceptual categories. In psychology, this approach goes back at least to the work of

Michotte [119], who extensively varied many perceptual cues to examine their effect

on ‘higher-level percepts’ such as causality and animacy. More recently in cognitive

science, this viewpoint has been developed by researchers such as [148] and by [16].

It is easy to see how low-level perceptual cues might explain some simple object

Small ‘relative

vorticity’, a good

cue for courting

behavior? Adapted

from Barrett et al.

(2005).

or location-directed goals. For example, the shrinking distance between an agent

and an object is a good cue for inferring which object is the agent’s goal. Beyond

location-based goals, this approach was also used to explain simple agent-directed

behavior such as chasing and fleeing [48]. Building on these successes, adherents

of the Cue-based viewpoint could argue that any goal inference can in principle be

captured using perceptual cues, if only the right perceptual cues could be identified

[11]. However, further consideration shows that in the case of social goals – and

abstract goals in general – such a “Cue Based” account becomes problematic. So-

cial goal inference is challenging because actions in and of themselves do not appear

to to hold intrinsic moral and social content (as pointed out by philosophers such

as Hume1 [82]). A particular action can not be morally or socially evaluated based

1“Take any action allow’d to be vicious: Wilful murder, for instance. Examine it in all lights,
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purely on its observable physical description. Rather, the social evaluation of actions

stems from the mental motivations assigned to the acting agents, mental motivations

which are unobservable and need to be inferred. More explicitly, the perceptual cue

approach does not easily account for the fact that the same actions could be inter-

preted completely differently - moving towards someone could be seen as helpful or

harmful, depending on the unobserved goal of the agent. Even hitting someone, as in

the case of the child reaching for a hot stove or a shiny toy, can be seen as helping or

harming that person depending on the situation and the intentions of those involved.

To examine the possible difficulties with the ‘Cue-based’ approach more con-

cretely, consider the study described in [76], in which infants see a two-dimensional

agent (say, a yellow triangle with eyes) placed at the bottom of the hill. The agent

then moves up the hill, but fails to reach the top. During one of the attempts, an-

other agent (e.g. a blue square) enters the scene and either moves the triangle up the

hill, or moves it down the hill. Based on these scenes, infants make predictions and

show preferences which suggest they understood the square was ‘helping’ or ‘hinder-

ing’ the triangle. The “Cue-based” account might argue that making this inference

Helping? is merely a case of using the right motion features. For example, infants may judge

the motion of the square as helping simply because the square is moving the triangle

in the direction the triangle was last observed moving on its own. However, consider

that pushing the triangle down could be helpful if there had been previous evidence

and see if you can find that matter of fact...which you call vice. In which-ever way you take it, you
find only certain passions, motives, volitions and thoughts. There is no other matter of fact in the
case. The vice entirely escapes you, as long as you consider the object. You never can find it, till
you turn your reflexion into your own breast, and find a sentiment of disapprobation, which arises
in you, towards this action...It lies in yourself, not in the object. So that when you pronounce any
action or character to be vicious, you mean nothing, but that from the constitution of your nature
you have a feeling or sentiment of blame from the contemplation of it. Vice and virtue, therefore,
may be compar’d to sounds, colours, heat and cold, which, according to modern philosophy, are
not qualities in objects, but perceptions in the mind” (Hume, A Treatise on Human Nature)
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that there is something dangerous at the top of the hill, or that the triangle’s goal

is at the bottom of the hill.

In fig. 2-1, I show several examples of actions involving two agents in pursuit of

goals, using a maze-like version of the Hamlin et al. task. The larger agent in this

case is able to push a boulder around, and cannot be moved by the small agent.

This similar to how the second agent in the Hamlin task has more affordances than

the first agent, that cannot climb the hill on its own. The larger agent pushing a

boulder out of the smaller agent’s path could be seen as a helpful action, allowing

the small agent to reach its goal on the other side of the boulder. However, this same

action could also be seen as selfish, if the large agent merely pushed the boulder out

of the way in order to get some reward on the other side for itself. A particular

action - such as moving towards or away from the other agent, pushing it or moving

objects - could be interpreted as helping, hindering or selfish actions depending on

the context. The ‘Cue-based’ approach does not easily account for this, nor for the

fact that completely opposite actions could be interpreted as belonging to the same

higher-level goal. For example, if the goal of the large agent is to help the small agent,

in one situation it might require getting closer in order to push it along, in other

situations it might require moving further away to not block the passage. Even in

such elementary cases the apparent simplicity of the Cue-based account fades away,

requiring more and more cues as the number of possible scenarios grows larger.

In contrast to such a perceptual-cue based account, I propose that the complexity

and robustness of social goal inference require structured models which can incorpo-

rate rich abstract knowledge. More specifically, I suggest social goal inferences can

be captured by a generative Bayesian formalism that explicitly uses the notions of

state, agent, and utility. This view is part of a general formalism in cognitive science

and AI which involves specifying the underlying processes that generate potentially
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Figure 2-1: 6 Examples of social interactions between agents, and the model infer-
ences made on their basis. (a) The examples show 2 snippets each of “helpful”,
“hindering” and “selfish” behavior on the large agent’s part. The left panel shows
the starting positions of the agents, the right panel shows the end position. Colored
arrows indicate the sequence of movement. (b) The posterior probability of the large
agent’s goals as the scenario unfolds, according to the Inverse Planning model.
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observable data, and then reasoning back from the actually observed data to the hid-

den underlying causes. The formalism has proven useful in understanding cognitive

domains such as perception [197] and motor control [99], and recently gained pop-

ularity in areas of higher-level cognition such as causal reasoning, object properties

and relations, category and classification, intuitive physics and general knowledge

acquisition [178, 12, 61, 195]. I will briefly review how this formalism was applied

in the domain of goal inference, then argue that an extension of this framework to

social goals can succeed where Cue-based methods cannot.

In the domain of action understanding and goal inference, the key underlying

process generating the data is planning. Planning takes an agent from goal repre-

sentations and beliefs to observable actions. As the inference of goals and beliefs

requires inverting this process – using Bayes’ rule to reason back from actions to hid-

den states – it is referred to as ‘Inverse Planning’. Baker et al. [8] showed how one

can use Inverse Planning to infer simple goals such as being in a particular location,

demonstrating strong correlations between this model and human responses on tasks

similar to those used by [79] and[76].

Baker et al. relied on the The Principle of Rational Action to describe how

a rational agent should act in a given environment. In psychological terms, this

principle determines that “An agent will take means to achieve its goals, given its

beliefs and the environment it is in”. Models of rational action assume agents use

rational planning to guide their actions given certain goals and constraints. Such

planning models have been developed by economists to explain group and individual

behavior, by psychologists and cognitive neuroscientists to explain mental and phys-

ical processes in the brain, and by computer scientists in order to build intelligent

systems capable of achieving certain aims and goals [133, 150, 189]. The under-

lying psychological principles can be captured computationally, by considering the
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decision-making processes of agents trying to maximize their utility given a possible

state of affairs. In this chapter we consider an extension of utility-based planning

known as Markov Decision Processes (MDPs). We will describe MDPs and their

relevance to psychology and action understanding in the next section.

While the principle of rational action (phrased in terms of utility theory) tells

an agent how to act, and while it is possible that social goals can be represented in

utility-theoretic terms, the principle of rational action alone does not specify how so-

cial goals are represented, what they mean, or how an agent should pursue them. To

see informally why such a representation is necessary and useful, consider a Martian

that has no idea how to act in human society. The Martian is a rational planning

agent, acting by the principle of rationality and capable of planning actions given

certain goals. One can imagine giving this Martian an infinite list of simple goals

prescribing exactly how to behave in any given situation (“If a friend is thirsty and

wants to drink water, give them water, if they want soda, give them soda”, etc.).

Such an exhaustive list might be technically possible, but would be impractical,“Do unto others

twenty-five percent

better than you

expect them to do

unto you, to correct

for subjective

error”

– Linus Pauling

unwieldy, and brittle. Instead, we might offer the Martian a general ‘Golden Rule’:

You should act towards others as you wish them to act towards you. This standard

of behavior and morality, one form of which is the epigram of this chapter, comes

up in many religious and philosophical texts throughout history, from ancient Egypt

through the verses of the Mahabharata, from the sermons of Jesus and up to modern

times. The idea is simple, yet abstract, and it has wide-ranging implications when

combined with rational inference.

We therefore propose in this chapter an additional principle, which like the prin-

ciple of rational action is simple, abstract, and can potentially reduce a great amount

of complexity when combined with rational inference - the Principle of Sympa-

thy/Antipathy. This principle specifies the representation of social goals, which
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can then be combined with the principle of rational action to reason about agents

that use rational social planning. Put formally, the positive part of this principle

is “In order to help someone, adopt their goal state as your own goal”. In more

utility-based terms, we define agent A as trying to help agent B if agent A explicitly

defines its utility function to depend in a positive way on agent B’s utility function:

Helps(A,B)→ UA(S) = f(UB(S)) (2.1)

Where Ui is the utility of agent i, S is a state of the world, and f(x) is an

increasing function of x. So, whatever is good for agent B will be good for agent A,

and whatever is bad for B will be bad for A.

Equally important, the negative part of this rule shows us how to go about hurting

and hindering our fellows, those that we have antipathy towards. We define agent A

as trying to hinder agent B if agent A explicitly defines its utility function to depend

in a negative way on agent B’s utility function:

Hinders(A,B)→ U(A) = g(U(B)) (2.2)

Where g(x) is a decreasing function of x. Now, whatever is bad for B will be

good for A, and whatever is good for B will be bad for A. We will later refer to this

formalization of the terms ‘helping’ and ‘hindering’ as the Principle of Sympathy.

In previous studies in the Inverse Planning tradition [10, 9, 8] the utility of agents

was a function of the state of the world. Here we extend utilities to include functions

that take in other utilities. This makes helping and hindering into a more abstract

relationship. Fig. 2-2 shows schematically the move from solitary rational agents

to social rational agents. For both agent types, the environment produces certain

beliefs, which combined with the desires of the agent dictate its actions through

49



the Principle of Rational Action. Beyond this, social agents now take into account

the planning models of other agents they are interacting with, and their desires are

defined on the desires of other agents, according to the Principle of Sympathy: the

utility function of a social agent depends to some degree on the utility function of

other agents. This relation between utilities is an abstract relationship, which is

world independent and extends across a multitude of different scenarios. Given a

new world with new sets of actions, a helpful agent could take new actions while

maintaining the same relationship with the target agent.

Our challenge in this work is to show that the computational model provides a

qualitative and quantitative fit to rapid human social goal inferences, and can cap-

ture fast human judgments from impoverished and unfamiliar stimuli. To do this

we use stimuli in the form of dynamic visual displays, showing agents moving about

in simple 2D maze-worlds. This paradigm was chosen to resemble previous stimuli

used in many studies with children and adults. These stimuli allow us to compare

quantitative and qualitative performance between human performance and compu-

tational models. We also compare our results to those of an alternative cue-based

model which makes inferences directly from visual cues such as distances between

agents or distances between goals. With this comparison we show our approach can

capture social goal inference across different scenarios in a way that resembles human

inference, and which the cue-based alternative in its current form cannot account for.

2.2 Computational Framework

Our framework assumes that people represent the causal role of an agent’s goals in

terms of an intuitive principle of rationality[35]: the assumption that agents will tend

to take efficient actions to achieve their goals, given their beliefs about the world.
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Figure 2-2: Theory of Mind and the Principle of Rationality, with extension to
multiple agents and social goals. (a) A model of a simple agent with beliefs about
the environment formed from experience with the world, and certain desires (such
as getting to the top of the hill). The agent chooses the appropriate next step
(moving up the hill), assuming a principle of rationality dictates its planning. (b)
The extension to multiple agents with social goals. The social agent constructs a
model of the other agent, from observing its actions in the world. The desires of the
social agent are dependent on the other agent through the principle of sympathy,
so that if the large agent wants to help the small agent, and believes that the small
agent wants to move uphill, then the large agent will push the small agent uphill.

The principle of rationality can be formalized using different planning procedures.

One such successful planning procedure which explicitly uses the notions of agent,
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state and goal is probabilistic planning in Markov decision problems (MDPs). Pre-

vious work has successfully applied Inverse Planning in MDPs to explain human

inferences about the object-directed goals of maze-world agents[8].

Multiagent extensions of MDP-based Inverse Planning were considered by [10],

capturing simple relational goals between agents such as chasing and fleeing. In this

work, we use similar multiagent MDPs to formally present a framework for modeling

inferences of more complex social goals, such as helping and hindering, where an

agent’s goals depend on the goals of other agents.

The structure of this section is as follows: We begin by describing the ‘gener-

ative/forward’ direction of planning in a multiagent MDP, giving a mathematical

formulation. We then describe the structure of the reward functions the agents have,

distinguishing between object-directed reward and social rewards. We distinguish

between simple, non-social agents and complex, social agents, based on their reward

function and their own planning model of other agents. Finally, we describe the

Bayesian inversion of the multiagent planning process which leads us from observed

actions to the joint inference of object-directed and social goals. We will use stimuli

similar to that used in the experiments to give concrete examples of the notions

detailed here.

2.2.1 Planning in multiagent MDPs

An MDPM = (S,A, T ,R, γ) is a tuple that defines a model of an agent’s planning

process. S is an encoding of the world into a finite set of mutually exclusive states,

which specifies the set of possible configurations of all agents and objects. A is the

set of actions, and T is the transition function, which encodes the physical laws of

the world, i.e. T (St+1, St, At) = P (St+1|St, At) is the marginal distribution over the
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next state, given the current state and the agent’s action (marginalizing over all other

agents’ actions). R : S × A → R is the reward function, which provides the agent

with real-valued rewards for each state-action pair. γ is the discount factor, which

dictates how much future rewards diminish in their value compared to the immediate

reward. To make this more concrete, consider the simple maze-world presented in

Fig. 2-1.

The set of possible actions A for each agent is (move up, move down, move left,

move right). The states S would be a set of 2-dimensional grid-coordinates of the

agents - ((xlarge, ylarge), (xsmall, ysmall)). Assuming we use an 8-by-5 grid to specify

the location of the agents, the initial state of the agents in a.1 is ((3, 4), (4, 1)).

Consider that the large agent now attempts to take the action move left, and the

small agent takes the action move up . If the actions aren’t noisy, the transition

function would place a probability of 1.0 on the next state being ((2, 4), (4, 2)).

The following subsections will describe how R depends on the agent’s goal G

(object-directed or social), and how T depends on the agent’s type (simple or com-

plex). We will then describe how agents plan over multiagent MDPs.

Reward functions

Object-directed rewards The reward function induced by an object-directed

goal G is straightforward. An agent planning under this reward function will take

actions to minimize the distance between it and the goal object or goal location,

contingent on action costs and environmental constraints. We assume that the reward

R is an additive function of state rewards and action costs, such that R(S,A) =

r(S) − c(A), where r(s) is the reward for being in state s, and c(a) is the cost of

taking action a. Basic intuition dictates that an agent with a certain object as its
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Figure 2-3: (a) Illustration of the state reward functions from the family defined
by the parameters ρg and δg. The agent’s goal is at (6,6), where the state reward is
equal to ρg. The state reward functions range from a unit reward in the goal location
(row 1) to a field of reward that extends to every location in the grid (row 3). (b)
Bayes net generated by multiagent planning. In this figure, we assume that there are
two agents, i and j, with i simple and j complex. The parameters {ρig, δig, ρio, ρjg, δjg}
and β are omitted from the graphical model for readability.

goal should receive some reward for being in the object-possessing state. However,

it is possible to imagine that different objects can induce different rewards in space.

Some objects might be rewarding only if one posses them directly - For instance,

on a hot summer day in the park, a drinking fountain is only rewarding when one

is standing directly next to it. Other objects or locations might be more rewarding

the closer one is to them, but still rewarding even if one does not inhabit the goal

location itself - One might covet some preferred movie seat, but nearby movie-seats

would do fine too. To capture this range, we consider a two-parameter family of

reward functions, parameterized by ρg and δg. These parameters determine the scale

and shape of the reward r(S) that one receives for being in a certain state in the

following way: ri(S) = max(ρg(1−distance(S, i, G)/δg), 0), where distance(S, i, G) is

the geodesic distance between agent i and the goal. By adjusting these parameters,

we can go from a ‘point-reward’ (receiving reward only for being in a certain state) to
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a ‘diffuse reward field’ (receiving more and more reward as one approaches a certain

state, up to some maximum value at that state), and from a strong reward signal to a

weak reward signal. To see this, consider that with δg < 1, the reward function has a

unit value of r(S) = ρg when the agent and object goal are in the same location, i.e.

when distance(S, i, G) = 0, and for all others the locations the reward is r(S) = 0

otherwise (see Fig. 2-3(a), row 1). When δg ≥ 1, there is a “field” of positive reward

around the goal, with a slope of −ρg/δg (see Fig. 2-3(a), rows 2 and 3). The state

reward has a maximal value of r(S) = ρg when distance(S, i, G) = 0 (i.e. when the

agent and the goal object are in the same location). This reward then decreases

linearly with the agent’s geodesic distance from the goal, reaching a minimum of

r(S) = 0 when distance(S, i, G) ≥ δg.

Social rewards for helping and hindering Our formal characterization of And children, with

the prattle and the

kiss / Soon broke

the parents’

haughty temper

down

– Lucretius, On the

Nature of Things

helping and hindering goals captures a simple intuition. Suppose a parent moves a

child in reach of her favorite toy. Typically, the parent acts not on a selfish desire

to move the child out of the way, but on a general desire that the child be in states

that are good or desirable (in this case, able to reach her favorite toy). The parent

can thus be modeled as having a general goal of doing whatever is best for the child.

In a narrow setting in which the child has a single goal (e.g. to reach a particular

location) the parent is modeled as sharing the child’s goal. Within our utility-based

framework, we formalize this idea by supposing that the reward function for an agent

with a social goal depends on the reward function of a simple agent. More precisely,

if A has the goal of helping B, then A’s reward is a strictly increasing function of

B’s reward. If A hinders B, then A’s reward is a decreasing function of B’s reward.

In both cases, A’s reward will also depend on the actions A takes. So A still has a

purely selfish concern with avoiding costly actions independently (e.g. moving large
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distances). One can imagine cases in which A has self-directed goals on top of the

socially defined goals and has to balance between the two (e.g. to get some coffee,

but also to move the child towards its favorite toy). In order to keep the distinction

between social and non-social clear, we do not consider such examples here, but the

extension is quite simple, and was considered in [84].

We now define these social goals in formal notation. For complex agent j, the state

reward function induced by a social goal Gj depends on the cost of j’s action Aj, as

well as the reward functionRi of the agent that j wants to help or hinder. Specifically,

j’s reward function is the difference of the expectation of i’s reward function and j’s

action cost function, such that Rj(S,Aj) = ρoEAi [Ri(S,Ai)] − c(S,Aj). ρo is the

social agent’s scaling of the expected reward of state S for agent i, which determines

how much j “cares” about i relative to its own costs. For helping agents, ρo > 0,

and for hindering agents, ρo < 0.

This formal definition captures the intuitive sense of “helping” or “hindering”,

which does not depend directly on action. For example, in some cases helping requires

moving away from an agent, and in other cases moving towards it. The specific

action will depend on the specific situation, but they stem from the same abstract

relationship between goals. Recall that in Fig. 2-1 we showed some simple examples of

possible interactions between social and non-social agents, and how different actions

could give rise to the same social goal inference.

Notice that in order for the an agent j to compute EAi [Ri(S,Ai)] it must itself

represent agent i as having a planning model by which it chooses its actions. This

is a formal requirement of the model, but it also makes intuitive sense - you cannot

adjust yourself to the future actions of some agent without any sense of what these

actions will be. Even modeling another agent as taking actions randomly is still

modeling it as having some kind of planning process (albeit a poor one). we describe
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the different agents’ planning process below.

State-transition functions

In our interactive setting, T i depends not just on i’s action, but on all other agents’

actions as well. Agent i is assumed to compute T i(St+1, St, A
i
t) by marginalizing over

Ajt for all j 6= i:

T i(St+1, St, A
i
t) = P (St+1|St, Ait) =

∑
Aj 6=i

P (St+1|St, A1:n
t )

∏
j 6=i

P (Aj|St, Gj),

where n is the number of agents. This computation requires that an agent have a

model of all other agents, whether simple or complex.

Simple agents We assume that the simple agents model other agents as randomly

selecting actions in proportion to the softmax of their expected cost, i.e. for agent

j, P (Aj|S) ∝ exp(β · c(S,Aj)).

Complex agents We assume that the social agent j uses its model of other agents’

planning process to compute P (Ai|S,Gi), for i 6= j, allowing for accurate prediction

of other agents’ actions. That is, the complex agents model other agents as choosing

their actions in rational pursuit of their goals. The next subsection describes the

mechanism for multiagent planning.

We assume all agents have access to the correct transition function, which de-

scribes the physical dynamics of the world. This is a simplification of a more realistic

framework in which agents have only partial or false knowledge about the environ-

ment. We also assume that complex agents have access to the correct goals of the

agents they are modeling. This too is a simplification which cannot capture, for ex-
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ample, an observer modeling another agent as having a false belief over goals (leading

to scenarios such as “The triangle thinks it is helping, but actually the circle does

not want to go up the hill at all”). For the questions we examine in this chapter,

however, such a simpler framework is entirely adequate and allows us to focus on the

question of social relations and goals. We return to this assumption in the discussion

section.

Multiagent planning

Given the variables of MDP M , we can compute the optimal state-action value

function Q∗ : S × A → R, which determines the expected infinite-horizon reward

of taking an action in each state. We assume that agents have softmax-optimal

policies, such that P (A|S,G) ∝ exp(βQ∗(S,A)), allowing occasional deviations from

the optimal action depending on the parameter β, which determines agents’ level of

determinism (higher β implies higher determinism, or less randomness).

In a multiagent setting, joint value functions can be optimized recursively, with

one agent representing the value function of the other, and the other representing

the representation of the first, and so on to an arbitrarily high order [196]. Here, we

restrict ourselves to the first level of this reasoning hierarchy. That is, an agent A

can at most represent an agent B’s reasoning about A’s goals and actions, but not a

deeper recursion in which B reasons about A reasoning about B.

2.2.2 Inverse Planning in multiagent MDPs

Once we have computed the ‘forward process’ for each agent - that is, the probability

distribution over the actions each agent should take in its environment using mut-

liagent planning - we use Bayes’ rule to infer the driving goals of the agents’ plans
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from their f actions. Put most generally:

P (G|A,E) ∝ P (A|G,E)P (G|E) (2.3)

Meaning that after we observe some set of actions A by the agents in environment

E, the posterior level of belief that we assign to an agent having a certain goal G,

is proportional to the likelihood of the agents taking actions A (given by the MDP

forward planning algorithm) and the prior probability of that goal. We can later

compare this posterior distribution over goals to participants’ goal judgment.

In order to complete this computation, however, we need to consider the param-

eters of the agents’ reward function. As described in the Reward Functions sub-

section, the rewards of the agents are parametrized by the ‘type’ of reward (point,

field, etc) as well as by how much a social agent values the reward given to its target

agent. Since we do not have a strong sense of what prior knowledge people have

regarding these parameters, we assume a uniform prior distribution over a plausi-

ble range and integrate them out per scenario. This allows us to capture the best

possible combinations of reward functions and goals for different scenarios without

committing explicitly to the prior knowledge people might have.

Fig. 2-3(b) shows the structure of the Bayes net generated by multiagent planning,

and over which goal inferences are performed.

Put formally, we begin by computing P (Ai|S,Gi) for agents 1 through n using

multiagent planning. We let θ = {ρig, δig, ρio}1:n be a vector of the parameters of the

agents’ reward functions. We then compute the joint posterior marginal of agent

i’s goal Gi and θ, given the observed state-sequence S1:T and the action-sequences
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A1:n
1:T−1 of agents 1:n using Bayes’ rule:

P (Gi, θ|S1:T , A
1:n
1:T−1, β) ∝

∑
Gj 6=i

P (A1:n
1:T−1|S1:T , G

1:n, θ, β)P (G1:n)P (θ). (2.4)

Ultimately, we need to obtain a posterior distribution over goals, not a joint

distribution over goals and reward parameters. To generate goal inferences for our

experimental stimuli to compare with people’s judgments, we integrate Eq. 2.4 over

a range of θ values for each stimulus trial:

P (Gi|S1:T , A
1:n
1:T−1, β) =

∑
θ

P (Gi, θ|S1:T , A
1:n
1:T−1, β). (2.5)

This integration step allows our models to infer the combination of goals and reward

functions that best explains the agents’ behavior for each stimulus. It also means we

do not use unnecessary extra parameters to fit participant behavior.

Before moving to the experiment, consider this model’s behavior on the simple

scenarios shown in Fig. 2-1. For example, in (b), the first case of ‘hindering’, the

large agent begins by moving down. This behavior is mainly consistent with the

large agent having the goal of getting to the flower or tree, and so the model places

more probability on these goals. As the agent moves right, the model reasons that

such behavior is inconsistent with having the flower as a goal, for if this was the case

a rational planner should probably move left. Appropriately, the model places most

of its certainty on the large agent having the tree as a goal. However, on the next

steps the large agent stays put, blocking the small agent on its way to the flower.

The model rapidly infers that this is actually hindering behavior, and maintains

that inference until the end of the scenario. The other example of hindering is more

60



clear-cut than this, and the model correctly and quickly matches this intuition.

2.3 Experiment

We designed an experiment to test the Inverse Planning model of social goal attri-

butions in a simple 2D maze-world domain, inspired by the stimuli of many previous

studies involving children and adults[79, 51, 180, 48, 100, 76, 149]. We created a

set of videos which depicted agents interacting in a maze. Each video contained one

“simple agent” and one “complex agent”, as described in the Computational Frame-

work section. Participants were asked to attribute goals to the agents after viewing

brief snippets of these videos. Many of the snippets showed agent behavior consistent

with more than one hypothesis about the agents’ goals. Data from participants was

compared to the predictions of the Inverse Planning model and a model based on

simple visual cues that we describe in the Modeling subsection below.

2.3.1 Participants

Participants were 20 adults from the MIT subject pool, 8 female and 12 male. Mean

age was 31 years.

2.3.2 Stimuli

We constructed 24 short animation sequences (“scenarios”) in which two agents

moved around a 2D maze, shown in Fig. 2-4. The maze always had the same layout

and always contained two potential object goals (a flower and a tree). In 12 of the

24 scenarios the maze also contained a movable obstacle, a boulder, to increase the

number of possible ways in which the large agent could interact with a small agent.
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The scenarios were designed to satisfy two criteria. First, scenarios were to have

agents acting in ways that were consistent with more than one hypothesis concerning

their goals, with these ambiguities between goals sometimes being resolved as the

scenario developed (see Fig. 2-4(a)). This criterion was included to test our model’s

predictions based on ambiguous action sequences. Second, scenarios were to involve

a variety of perceptually distinct plans of action that might be interpreted as issuing

from helping or hindering goals. For example, one agent pushing another toward

an object goal, removing an obstacle from the other agent’s path, and moving aside

for the other agent (all of which featured in our scenarios) could all be interpreted

as helping. This criterion was included to test our formalization of social goals as

based on an abstract relation between reward functions. On our formalization, social

agents act to maximize or minimize the reward of the other agent, and the precise

manner in which they do so will vary depending on the structure of the environment

and their initial positions.

The agents in the stimuli were represented as colorful circles with large eyes,

similar to those depicted in [76]. Each scenario featured two different agents, which

we call “Small” and “Large”. Large agents were visually bigger and are able to

shift both movable obstacles and Small agents by moving directly into them. Large

agents never fail in their actions, e.g. when they try to move left, they indeed move

left. Small agents were visually smaller, and could not shift agents or boulders. In

our scenarios, the actions of Small agents failed with a probability of about 0.4.

Large agents correspond to the “complex agents” introduced in Section 2, in that

they could have either object-directed goals or social goals (helping or hindering the

Small agent). Small agents correspond to “simple agents” and could have only object

goals. The “action” of an agent was depicted by it squeezing in the direction in which

it was attempting to move, and if the action was successful the agent moved into
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Figure 2-4: Example interactions between Small and Large agents. Agents start as
in Frame 1 and progress along the corresponding colored paths. Each frame after
Frame 1 corresponds to a probe point at which the video was cut off and participants
were asked to judge the agents’ goals. (a) The Large agent moves over each of the
goal objects (Frames 1-7) and so the video is initially ambiguous between his having
an object goal and a social goal. Disambiguation occurs from Frame 8, when the
Large agent moves down and blocks the Small agent from continuing his path up
to the object goal. (b) The Large agent moves the boulder, unblocking the Small
agent’s shortest path to the flower (Frames 1-6). Once the Small agent moves into
the same room (6), the Large agent pushes him up to flower and allows him to rest
there (8-16).

the appropriate space. If the action failed, the agent remained where it was. This

allowed participants to perceive the failed actions of the “Small” agent, providing

them with information of its possible goal even if it did not succeed in moving. This
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corresponds to the experiment described in [76], in which infants could see an agent

attempting to move uphill and failing.

We produced videos of 16 frames in length, displaying each scenario. We showed

three snippets from each video, which stopped some number of frames before the

end. For example, the three snippets of scenario 6 were cut off at frames 4, 7, and 8

respectively (see Fig. 2-4(a)). Participants were asked to make goal attributions at

the end of both the snippets and the full 16-frame videos. Asking participants for

goal attributions at multiple points in a sequence allowed us to track the change in

their judgments as evidence for particular goals accumulated. These cut-off or probe

points were selected to try to capture key events in the scenarios and so occurred

before and after crucial actions that disambiguated between different goals. Since

each scenario was used to create 4 stimuli of varying length, we had a total of 96

stimuli.

2.3.3 Procedure

Participants were initially shown a set of familiarization videos of agents interacting

in the maze, illustrating the structural properties of the maze-world (e.g. the ac-

tions available to agents and the possibility of moving obstacles) and the differences

between Small and Large agents. The experimental stimuli were then presented in

four blocks, each containing 24 videos. Scenarios were randomized within blocks

across participants. The left-right orientation of agents and goals was counterbal-

anced across participants. Participants were told that each snippet would contain

two new agents (one Small and one Large) and this was highlighted in the stimuli

by randomly varying the color of the agents for each snippet. Participants were told

that agents had complete knowledge of the physical structure of the maze, including
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the position of all goals, agents and obstacles. After each snippet, participants made

a forced-choice for the goal of each agent. For the Large agent, they could select

either of the two social goals and either of the two object goals. For the Small agent,

they could choose only from the object goals. Participants also rated their confidence

on a 3-point scale.

2.3.4 Modeling

Inverse Planning Model

Inverse Planning model predictions were generated using Eq. 2.5, assuming uniform

priors on goals, and were compared directly to participants’ judgments. In our

experiments, the world is given by a 2D maze-world, and the state space includes

the set of positions that agents and objects can jointly occupy without overlapping.

The set of actions includes Up, Down, Left, Right and Stay and we assume that

c(A ∈ {Up,Down, Left, Right}) = 1, and c(Stay) = 0.1 to reflect the greater cost

of moving than staying put. We set β to 2 and γ to 0.99, following[8].

For the other parameters (namely ρg, δg and ρo) we integrated over a range of

values that provided a good statistical fit to our stimuli. For instance, some stimuli

were suggestive of “field” goals rather than point goals, and marginalizing over δg

allowed our models to capture this. Values for ρg ranged from 0.5 to 2.5, going from a

weak to a strong reward. For δg we integrated over three possible values: 0.5, 2.5 and

10.5. These corresponded to “point” object goals (agent receives reward for being

on the goal only), “room” object goals (agent receives the most reward for being on

the goal and some reward for being in the same room as the goal) and “full space”

object goals (agent receives reward at any point in proportion to distance from goal).

Values for ρo ranged from 1 to 9, ranging from caring weakly about the other agent
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to caring about it to a high degree.

Visual Cue Model

We compared the Inverse Planning model to a model that made inferences about

goals based on simple visual cues, inspired by previous heuristic- or perceptually-

based accounts of human action understanding of similar 2D animated displays [16,

198]. Our aim was to test whether accurate goal inferences could be made simply

by recognizing perceptual cues that correlate with goals, rather than by inverting

a rational model. We constructed our “Cue-based” model by selecting ten visual

cues (listed below), including nearly all the applicable cues from the existing cue-

based model described in [16], leaving out those that do not apply to our stimuli,

such as heading, angle and acceleration. We then formulated an inference model

based on these cues by using multinomial logistic regression to participants’ average

judgments. The set of cues was as following: (1) the distance moved on the last

timestep, (2) the change in movement distance between successive timesteps, (3+4)

the geodesic distance to goals 1 and 2, (5+6) the change in distance to goals 1 and

2 (7) the distance to Small, (8) the change in distance to Small, (9+10) the distance

of Small to goals 1 and 2.

2.3.5 Results

Our main question is in the psychology of high-level social goals, therefore we an-

alyzed only participants’ judgments about the Large agents, which are the ones

capable of social goals and complex representations of other agents. Each partici-

pant judged a total of 96 stimuli, corresponding to 4 time points along each of 24

scenarios. For each of these 96 stimuli, we computed an empirical probability distri-
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bution representing how likely a participant was to believe that the Large agent had

each of the four goals ‘flower’, ‘tree’, ‘help’, or ‘hinder’, by averaging judgments for

that stimulus across participants, weighted by participants’ confidence ratings. All

analyses then compared these average human judgments to the predictions of the

Inverse Planning and Cue-based models.

Our main finding is that people’s judgments for social and non-social goals

matched the Inverse Planning model to a high degree, whereas the Cue-based model

was generally unable to distinguish between social goals. The Cue-based model is

able to match non-social goal inferences to a high-degree, but at the end of social-

goal scenarios it is essentially at chance guessing whether the goal was helping or

hindering. This suggests that simple cues such as minimizing distance might be able

to guide people’s goal inferences when dealing with simple goals, but more abstract

reasoning is required for high-level social goals.

Another key finding is that the Inverse-Planning model does equally well on sce-

narios involving ‘boulder’ obstacles and scenarios not involving obstacles, whereas

the performance of the Cue-based model drops drastically if trained on one set of

scenarios and used on another. This shows that cues that were useful in some scenar-

ios for diagnosing ‘helping’ might become useless in qualitatively scenarios, whereas

the basic abstract principle driving the Inverse Planning inference remains equally

useful across many different scenarios. This finding echoes the philosophers’ point

about there being no ‘intrinsically moral action’ in and of itself. There is no one

cue or action feature which can diagnose it as ‘helping’ for every given scenario -

sometimes pushing a boulder towards another agent is helpful, sometimes it is not,

depending on the goals of the other agent and the overall environment.

In terms of the linear correlation between human judgment and predictions of the

models, the results are as follows: Overall, considering all goal types and training
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the Cue-based model on both obstacles and non-obstacles , the two models appear

to perform similarly (r = 0.83, for the Inverse Planning model, and r = 0.7 for

the Cue-based model). However, by breaking these correlations down by goal type

we find significant differences between the models on social versus object goals (see

Fig. 2-5).

The Inverse Planning model correlates well with judgments for all goal types:

r = 0.79, 0.77, 0.86, 0.81 for flower, tree, helping, and hindering respectively. The

Cue-based model correlates well with judgments for object goals (r = 0.85, 0.90 for

flower, tree) – indeed slightly better the Inverse Planning model – but much less well

for social goals (r = 0.67, 0.66 for helping, hindering). The most notable differences

come on the left-hand sides of the bottom panels in Fig. 2-5. There are many

stimuli for which people are very confident that the Large agent is either helping or

hindering, and the Inverse Planning model is similarly confident (bar heights near 1).

The Cue-based model, in contrast, is unsure: it assigns roughly equal probabilities of

helping or hindering to these cases (bar heights near 0.5). In other words, the Cue-

based model is effective at inferring simple object goals of maze-world agents, but

is generally unable to distinguish between the more complex goals of helping and

hindering. When constrained to simply differentiating between social and object

goals both models succeed equally (r = 0.84), where in the Cue-based model this

is probably because moving away from the object goals serves as a good cue to

separate these categories. However, the inverse planning model is more successful in

differentiating the right goal within social goals (r = 0.73 for the inverse planning

model vs. r = 0.44 for the Cue-based model). Even the slight superiority of the Cue-

based model at judging object goals is probably driven by the single cue of getting

closer to the target goal, which was particularly useful when the Large agent had an

object goal. In these cases the agent always moved directly to it along the shortest
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path. It made no errors and never had to take an indirect route. The homogeneity of

these cases is favorable to a model based on visual cues. More varied stimuli would

make even object-goal judgments more taxing for a visual percept based model (see

for example [10]).

Several other general trends in the results are worth noting. The Inverse Planning

model fits very closely with the judgments participants make after the full 16-frame

videos. On 23 of the 24 scenarios, humans and the inverse planning model have

the highest posterior / rating in the same goal (r = 0.97, contrasted with r = 0.77

for the Cue-based model). It should be noted that in the one scenario for which

humans and the inverse planning model disagreed after observing the full sequence,

both humans and the model were close to being ambivalent whether the Large agent

was hindering or interested in the flower. There is also evidence that the reasonably

good overall correlation for the Cue-based model is partially due to overfitting; this

should not be surprising given how many free parameters the model has. We divided

scenarios into two groups depending on whether a boulder was moved around in

the scenario, since movable boulders increase the range of variability in helping and

hindering action sequences. When trained on the ‘no boulder’ cases, the Cue-based

model correlates poorly with participants average judgments on the ‘boulder’ cases:

r = 0.42. The same failure of transfer occurs when the Cue-based model is trained on

the ‘boulder’ cases and testing on the ‘no boulder’ cases: r = 0.36 on the test stimuli.

As discussed above, this is consistent with our general concern that a Cue-based

model incorporating many free parameters may do well when tailored to a particular

environment, but is not likely to generalize well to new environments. In contrast,

the Inverse Planning model captures abstract relations between the agents and their

possible goal and so lends itself to a variety of environments without requiring a

growing number of parameters.
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Figure 2-5: Correlations between human goal judgments and predictions of the In-
verse Planning model (a) and the Cue-based model (b), broken down by goal type.
Bars correspond to bins of stimuli (out of 96 total) on which the average human
judgment for the probability of that goal was within a particular range; the mid-
point of each bin’s range is shown on the x-axis labels. The height of each bar shows
the model’s average probability judgment for all stimuli in that bin. Linear corre-
lations between the model’s goal probabilities and average human judgments for all
96 stimuli are given in the y-axis labels.

The inability of the heuristic model to distinguish between helping and hindering

is illustrated by the plots in Fig. 2-6. In contrast, both the Inverse Planning model

and the human participants are often very confident that an agent is helping and not

hindering (or vice versa).

Fig. 2-6 also illustrates a more general finding, that the Inverse Planning model

captures most of the major qualitative shifts (e.g. shifts resulting from disambiguat-

ing sequences) in participants’ goal attribution. Figure 2-6 displays mean human

judgments on four scenarios. Probe points (i.e. points within the sequences at which

participants made judgments) are indicated on the plots and human data is compared

with predictions from the Inverse Planning model and the Cue-based model.

On scenario 6 (depicted in Fig. 2-4(a) but with goals switched), both the Inverse

Planning model and humans participants recognize the movement of the Large agent
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Figure 2-6: Example data and model predictions. Probe points are marked as black
circles. (a) Average participant ratings with standard error bars. (b) Predictions
of Inverse Planning model interpolated from cut points. (c) Predictions of Inverse
Planning model for all points in the sequence. (d) Predictions of Cue-based model.

one step off the flower (or the tree in Fig. 2-4(b)) as strong evidence that Large has

a hindering goal. The Cue-based model responds in the same way but with much

less confidence in hindering. Even after 8 subsequent frames of action it is unable to

decide in favor of hindering over helping.

While the Inverse Planning model and participants almost always agree by the

end of a sequence, they sometimes disagree at early probe points. In scenario 5,

both agents start off in the bottom-left room, but with the Small agent right at the

entrance to the top-left room. As the Small agent tries to move towards the flower

(the top-left goal), the Large agent moves up from below and pushes Small one step

towards the flower before moving off to the right to the tree. People interpret the
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Large agent’s action as strong evidence for helping, in contrast with the Inverse

Planning model. For the model, because Small is so close to his goal, Large could

just as well stay put and save his own action costs. Therefore his movement upwards

is not evidence of helping.

2.4 General Discussion

There is nothing either good or bad, but thinking makes it so

– Hamlet, Act II, Scene II

Our goal in this chapter was to address two challenges. The first challenge was

to formalize social goal attribution within a general theory-based model of intuitive

psychology. This model had to account for the general range of behaviors that hu-

mans judge as evidence of helping or hindering. The second, more specific challenge

was for the model to perform well on a demanding inference task in which social goals

must be inferred from very few observations without direct evidence of the agents’

goals.

The experimental results go some way toward meeting these challenges. The

Inverse Planning model classified a diverse range of agent interactions as helping or

hindering in line with human judgments. This model also distinguished itself against

a model based solely on simple perceptual cues. It produced a closer fit to humans

for both social and nonsocial goal attributions, and was far superior to the visual

cue model in discriminating between helping and hindering.

The essential extension to previous work on action understanding as inverse-

planning is the addition of a Principle of Sympathy. Much like the Principle of

Rational Action, this notion can abstract away many details about any specific sce-
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nario and provide general guidelines for goal achievement. By assuming other agents

behave according to this principle, a rational observer can understand a myriad of

potentially novel situations. The principle is captured in computational terms by re-

cursive utility functions in multi-agents MDPs. A “helpful” agent adopts the utility

of others as its own, and a “hindering” agent adopts the negative of this utility. This

echoes the etymology of the word ‘sympathy’ itself, made up of the words ‘feeling’

and ‘together’.

While our experiments were conducted with adults, our model is well-suited to

capture the findings come infant literature, such as [76, 75]. In almost all of these

infant experiments the actions of the helpers and hinderers were perceptually dis-

tinct: for example, hindering agents pushed downhill and closed boxes, helpful agents

pushed uphill and opened boxes. This leaves open the possibility that infants are us-

ing cue-based perceptual models to classify social agents. New joint work [93] shows

that infants distinguish perceptually identical actions depending on the social goals,

preferences, and perceptual access of other agents, as predicted by an extension of

the model presented here.

This new work required the model to go beyond a simplifying assumption made

here - that the knowledge of the observer is shared by the social agents. But once

false belief or different states of knowledge are possible, social and moral evaluations

become more markedly more complex. Suddenly one can have scenarios like “Alice

thought Bob was bad and tried to hinder him, however Bob was good, but Alice did

not know this and so does not deserve punishment for hindering”, or “Alex is Beth’s

friend and wants the best for her. He knows Beth wants The Thing, but thinks that

this is foolish and that if only Beth really knew what was good for her, she would not

want The Thing. Alex did not help Beth get The Thing”. More complex, certainly,

but also more realistic.
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Uncertainties over the true nature of things apply to goals and intentions, but also

to the physical world itself. Having such uncertainties at all levels of the model means

that inferences can be made at different levels too. For example, if you are unsure

about an agent’s intention and observe a highly diagnostic action (like smacking),

you may draw strong conclusions about the agent’s intentions (to harm). But a

high degree of certainty about the intention could instead drive conclusions about

elements of the world. Think back to the case of the child reaching for a hot stove

and receiving a smack on the hand from her mother. If the child has a high certainty

that the mother is trying to help her, she would infer new knowledge about the

world that caused her mother’s actions: the stove is dangerous. Much of pedagogy

is supported by the assumption that the teacher is not only knowledgeable, but also

trying to be helpful in explaining the world [46].

These complexities are a challenge for people, not just models. In general, the

‘inverse’ direction of Bayesian inference is hard. In vision, for example, there is a

large space of possible ‘scenes’ that can produce the same visual percept. In social

contexts, there is a large space of social and moral properties that can explain a

sequence of events. In visual perception there is generally an agreed upon ‘solution’

in the form of a high-probability visual scene all people converge on 2. But in moral

and social inferences – and perhaps in all high-level cognition – there is no agreed

upon ‘single solution’. There may be several competing and incompatible ‘high

probability solutions’, some appealing to intentions, others to beliefs, others to the

world.

The cue-based approach often cites the automatic nature of certain moral and

social evaluations as evidence that the inference process is similar to a bottom-up

perceptual problem. We agree that visual perception and inference of intentions and

2Barring certain illusions, and even then there are only a few common percepts
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goals share certain basic mechanisms, however the results presented here suggest

that what they might share is the underlying mechanism of Bayesian inference. -

Vision has been highly optimized over evolutionary time, but social perception was Whoever draws too

close, and catches

the Sirens’ voice in

the air: no sailing

home for him, no

wife rising to meet

him, no happy

children beaming up

at their father’s

face (The Odyssey)

not, perhaps cannot be. We do not doubt the reality of some cues for animacy and

simple social evaluation, but these might serve only to bias people as part of their

otherwise more mentalistic evaluation.

The moral and social explanations people use can be contested and are subject

to revision and change upon reflection, a hallmark of high-level processes. The naive

person suddenly appearing on Odysseus’ ship may have thought the sailors were

treating Odysseus cruelly based on what she saw with her own eyes. But having

read through the Odyssey, she might change her mind.
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Chapter 3

Learning Physics∗

There are children playing in the

street who could solve some of my

top problems in physics, because

they have modes of sensory

perception that I lost long ago. —

J. Robert Oppenheimer, as quoted

by Marshall Mcluhan

3.1 Introduction

Reasoning about the physical properties of the world around us is a ubiquitous

feature of human mental life. Not a moment passes when we are not, at least at

some implicit level, making physical inferences and predictions. Glancing at a book

on a table, we can rapidly tell if it is about to fall, or how it will slide if pushed, tumble

∗Joint work with Andreas Stuhlmller, Noah Goodman and Josh Tenenbaum
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if it falls on a hard floor, sag if pressured, bend if bent. The capacity for physical

scene understanding begins to develop early in infancy, and has been suggested as a

core component of human cognitive architecture [168].

While some parts of this capacity are likely innate [7], learning also occurs at

multiple levels from infancy into adulthood. Infants develop notions of containment,

support, stability, and gravitational force over the first few months of life [124, 3],

as well as differentiating between liquid substances and solid objects [80]. Young

children build an intuitive understanding of remote controls, touch screens, magnets

and other physical devices that did not exist over most of our evolutionary history.

Astronauts and undersea divers learn to adapt to weightless or partially weightless

environments [118], and videogame players can adjust to a wide range of game worlds

with physical laws differing in some way from our everyday natural experience.

Not only can we learn or adapt our intuitive physics, but we can often do so

from remarkably limited and impoverished data. While extensive experience may be

necessary to achieve expertise and fluency, only a few exposures are sufficient to grasp

the basics of how a touch screen device works, or to recognize the main ways in which

a zero-gravity environment differs from a terrestrial one. While active intervention

and experimentation can be valuable in discovering hidden causal structure, they

are often not necessary; observation alone is sufficient to infer how these and many

aspects of physics operate. People can also can gain an intuitive appreciation of

physical phenomena which they can only observe or interact with indirectly, such as

the dynamics of weather fronts, ocean waves, volcanoes or geysers.

Several questions naturally follow. How, in principle, can people learn aspects

of intuitive physics from experience? What is the form of the knowledge that they

learn? How can they grasp structure at multiple levels, ranging from deep enduring

laws acquired early in infancy to the wide spectrum of novel and unfamiliar dynamics
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that adults encounter and can adapt to? How much and what kind of data are re-

quired for learning different aspects of physics, and how are the data brought to bear

on candidate hypotheses? In this chapter we present a theoretical framework that

aims to answer these questions in computational terms, and a large-scale behavioral

experiment that tests the framework as an account of how people learn basic aspects

of physical dynamics from brief moving scenes.

Our modeling framework takes as a starting point the computational-level view

of theory learning as rational statistical inference over hierarchies of structured rep-

resentations [178, 68]. Previous work in this tradition focused on relatively spare

and static logical descriptions of theories and data; for example, a law of magnetism

might be represented as ‘if magnet(x) and magnet(y) then attract(x,y)’, and the

learner’s data might consist of propositions such as ‘attracts(objecta, objectb)’ [92].

Here we adopt a more expressive representational framework suitable for learning the

force laws and latent properties governing how objects move and interact with each

other, given observations of scenes unfolding dynamically over time. Our represen-

tation includes both logical machinery to express abstract properties and laws, but

also numerical and vector resources needed to express the observable trajectories of

objects in motion, and the underlying force dynamics causally responsible for those

motions. We can express all of this knowledge in terms of a probabilistic program in

a language such as Church [58, 59].

An example of the kind of dynamic scenes we study is shown in Fig. 3-1. Imagine

this as something like an air hockey table viewed from above. There are four disk-

shaped “pucks” moving in a two-dimensional rectangular environment under the

influence of various causal laws and causally relevant properties. In a physical domain

the causal laws are force laws, and these forces may be either local and pairwise

(analogous to the way two magnetic objects typically interact) or global (analogous
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to the way gravity operates in our typical environment). The properties are physical

properties that determine how forces act on objects, and may include both object-

based and surface-based features, analogous to inertial mass and friction respectively.

A child or adult looking at such a display might come to a conclusion such as ‘red

pucks attract one another’ or ‘green patches slow down objects’. With the right

configuration different physical properties begin to interact, such that an object

might be seen as heavy, but in the presence of a patch that slowed it down its

‘heaviness’ might be explained away as friction.

Such dynamical displays are still far simpler than the natural scenes people see

early in development, but they are much richer than the stimuli that has been studied

in previous experiments on learning intuitive physics and learning in intuitive causal

theories more generally. Previous research on learning physics from dynamical scenes

has tended to focus on the inference of object properties under known force laws,

and typically on only the simplest case: inferring a single property from a single

dynamical interaction, as in inferring the relative mass of two objects from observing

a single collision between them with one object starting at rest (see for example

[140, 55, 179, 2]).

Some research on causal learning more generally has looked at the joint inference

of causal laws and object attributes, but only in the presence of simple discrete events

rather than a rich dynamical scene [65, 67, 71]. For example, from observing that a

“blicket-detector” lights up when objects A or B are placed on it alone or together,

but does not light up when objects C or D are placed on it alone or in combination

with A or B, people may infer that only objects A and B are blickets, and that the

blicket detector only lights up when all the objects on it are blickets [109]. It is not

clear that studying how people learn from a small number of isolated discrete events

presented deliberately and pedagogically generalizes to how they learn physics in the
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real world, where configurations of objects move continuously in space and time and

interact in complex ways that are hard to demarcate or discretize.

In this sense our experiments are intended to capture much more of how we

learn physics in the real world. Participants observe multiple objects in motion over

a period of five seconds, during which the objects typically collide multiple times

with each other as well as with stationary obstacles, pass over surfaces with different

frictional properties, and move with widely varying velocities and accelerations. We

compare the performance of human learners in these scenarios with the performance

of an ideal Bayesian learner who can represent precisely the dynamical laws and

properties at work in these stimuli. While people are generally able to perform this

challenging task in ways broadly consistent with an ideal observer model, they also

make systematic errors which are suggestive of how they might use feature-based

inference schemes to approximate ideal Bayesian inference. Hence we also compare

people’s performance to a hybrid model that combines the two kinds of inference

(ideal and feature-based), suggesting how to build a unified account which is based

both on heuristics and an implicit understanding of Newtonian-like mechanics.

3.2 Formalizing Physics Learning

The core of our formal treatment is a hierarchical probabilistic generative model for

theories [92, 187, 62], specialized to the domain of intuitive physical theories (Fig. 3-

2). The hierarchy consists of several levels, with more concrete (lower-level) concepts

being generated from more abstract versions in the level above, and ultimately bot-

toming out in data that take the form of dynamic motion stimuli.

Generative knowledge at each level is represented formally using (define ...)

statements in Church, a stochastic programming language [58]. The (define x v)
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Figure 3-1: Illustration of the domain explored in this chapter, showing the motion
and interaction of different pucks moving on a two-dimensional plane governed by
latent physical properties and dynamical laws, such as mass, friction, global forces
and pairwise forces.

statement binds the value v to the variable x, much as the statement a = 3 binds

the value 3 to the variable a in many programming languages. In probabilistic pro-

gramming, however, we often bind variables with values that come from probability

distributions, and thus on each run of the program the variable might have a different

value. For example, (define dice (uniform-draw 1 6)) stochastically assigns a

value between 1 and 6 to the variable dice. Whenever the program is run, a different

value is sampled and assigned to dice, drawing from the uniform distribution.

Probabilistic programs are useful for representing knowledge with uncertainty
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(see for example [58, 172, 60]). Fig. 3-2(iii) shows examples of probabilistic definition

statements within our domain of intuitive physics, using Church. Fig. 3-2(i) shows

the levels associated with these statements, and the arrows from one level to the

next show that each level is sampled from the definitions and associated probability

distributions of the level above it. The definition statements provide a formalization

of the main parts of the model. The full forward generative model is available at

http://forestdb.org/models/learning-physics.html

In the text below we will explain these ideas further, using informal English

descriptions whenever possible, but see [58] for a more formal treatment of the pro-

gramming language Church, and probabilistic programming in general.

Framework level. The top-most level N represents general framework knowl-

edge [191] and expectations about physical domains. The concepts in this level

include entities, which are a collection of properties, and forces, which are func- All nature, then, as

self-sustained,

consists / Of twain

of things: of bodies

and of void / In

which they’re set,

and where they’re

moved around.

– Lucretius, On the

Nature of Things

tions of properties and govern how these properties change over time. Forces can be

fields that apply uniformly in space and time, such as gravity, or can be event-based,

such as the force impulses exerted between two objects during a collision or the forces

of kinetic friction between two objects moving over each other.

Properties are named values or distributions over values. While different entities

can have any number of properties, a small set of properties are ‘privileged’: it is

assumed all entities have them. In our setup, the properties location and shape are

privileged in this sense.

Entities are further divided into ‘static’ and ‘dynamic’. Dynamic entities are

those that can potentially move, and all dynamic entities have the privileged property

mass. Dynamic entities correspond then to the common sense definition of matter

as ‘a thing with mass that occupies space’ 1.

1The static/dynamic distinction is motivated by similar atomic choices in most computer physics
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Level 2!

Level 0 (data)!

Mass!

Friction!

Initial conditions!

(i)! (ii)!

Properties!

Force classes! Pairwise:!

Global:!

Level 1 !
Property !
values!

Force !
parameters!

Force b/w reds: attract!

: large mass!
: medium mass!

: high friction!
: small mass!

: no friction!

(define (pairwise-force c1 c2) 
 (let* ((a (uniform-draw ’ (-1 0 1)))) 
 (lambda (o1 o2) 
  (let ((r (euc-dist o1 o2)))  
   (/ (* a (del o1 (col o1)) (del o2 (col o2))) 
      (power r 2)))))) 

1!

2!

(define (global-force) 
  (let* ((d (uniform-draw compass-dir))) 
   (lambda (o) (* k d)))) 

(define (mass)  
   (pair “mass” (uniform ’ (1 3 9))))  

(define (friction)  
   (pair “friction” ’ (uniform ’ (0 5 20))))  

(define world-entities 
 (map sample-values entity-list)) 
    

(define world-forces 
 (map sample-parameters force-list) 

(define scenario 
 (let* ( 

  (init-cond (sample-init world-entities))) 
   (run-dynamics world-entities 
      world-forces init-cond steps dt))) 

(iii)!

Entity types! Puck:!

Surface:!

(define puck (make-dynamic-entity 
    pos shape mass vel … )) 

                      
(define surface (make-static-entity  

     pos shape friction … )) 
                          

Level N !
Entity! (define (make-entity property1 property2 … ) 

  (list property1 property2 … )) 

Newtonian !
Dynamics!

(define (run-dynamics entities forces  
         init-cond steps dt) 
  (if (= steps 0) ‘() 
   (let* ((m (get-mass entities)) 

   (F (apply-forces forces entities)) 
   (a (/ F m)) 
      (new-cond (integrate init-cond  
     a dt noise))) 
   (pair new-cond (run-dynamics entities 

    forces new-cond (- 1 step) dt))))) 
  

Innate !
concepts!

Figure 3-2: Formal framework for learning intuitive physics in different domains: (i)
The general hierarchy going from abstract principles and assumptions to observable
data. The top-most level of the hierarchy assumes a general noisy-Newtonian dy-
namics. (ii) Applying the principles in the left-most column to the particular domain
illustrated by Fig. 3-1 (iii) Definition statements in Church, capturing the notions
shown in the middle column with a probabilistic programming language.

engines used for approximate dynamic simulations, engines that were suggested as models of human
intuitive physics (e.g. [12]). In these physics engines the static/dynamic divide allows computational
speed-up and memory conservation, since many forces and properties don’t have to be calculated or
updated for static entities. It is an interesting possibility that the same kind of short-cuts developed
by engineers trying to quickly simulate physical models might also represent a cognitive distinction.
Similar notions have been proposed in cognitive development in the separation of ‘objects’ from
more stable ‘landscapes’ [106]
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The framework level defines a ‘Newtonian-like’ dynamics, where acceleration is

proportional to the sum of the forces acting on an object’s position relative to the

object’s mass. This is consistent with suggestions from several recent studies of

intuitive physical reasoning in adults [12, 164, 54, 144] and infants [174]. As [144]

show, such a ‘noisy-Newtonian’ representation of intuitive physics can account for

previous findings in dynamical perception that have supported a heuristic account

of physical reasoning [55, 56, 179], or direct perception models [140, 2].

Descending the hierarchy. Descending from Level N to Level 0, concepts

are increasingly grounded by sampling from the concepts and associated probability

distributions of the level above (Fig. 3-2(i)). Each level in the hierarchy can spawn

a large number of instantiations in the level below it. Each lower level of the hi-

erarchy contains more specific entities, properties and forces than the level above

it. An example of moving from Level N to Level N-1 would be grounding the gen-

eral concepts of entities and forces as more specifically 2-dimensional masses acting

under collisions. An alternative would ground the same general entities and forces

as 3-dimensional masses acting under conservation forces. This grounding can pro-

ceed through an indeterminate number of levels, until it ultimately grounds out in

observable data (Level 0).

Space of learnable theories. Levels 0-2 in Fig. 3-2 capture the specific sub-

domain of intuitive physics we study in this chapter’s experiments: two-dimensional

discs moving over various surfaces, generating and being affected by various forces,

colliding elastically with each other and with barriers bounding the environment (cf

Fig. 3-1).

Levels 0-2 represent the minimal framework needed to explain behavior in our task

and we remain agnostic about more abstract background knowledge that might also

be brought to bear. We give participants explicit instructions that help determine
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a single Level 2 schema for the task, which generates a large hypothesis space of

candidate Level 1 theories, which they are asked to infer by using observed data at

Level 0.

Level 2: The “hockey-puck” domain. This level specifies the entity types

puck and surface. All entities within the type puck have the properties mass, elas-

ticity, color, shape, position, and velocity. Level 2 also specifies two types of force:

Pairwise forces cause pucks to attract or repel, following the ‘inverse square distance’

form of Newton’s gravitation law and Coulomb’s Law. Global forces push all pucks

in a single compass direction. We assume forces of collision and friction that follow

their standard forms, but they are not the subject of inference here.

Level 1: Specific theories. The hockey-puck domain can be instantiated as

many different specific theories, each describing the dynamics of a different possible

world in this domain. A Level 1 theory is determined by sampling particular values

for all free parameters in the force types, and for all entity subtypes and their sub-

type properties (e.g., masses of pucks, friction coefficients of surfaces). Each of the

sampled values is drawn from a probability distribution that the Level 2 theory spec-

ifies. So, Level 2 generates a prior distribution over candidate theories for possible

worlds in its domain.

The domain we study here allows three types of pucks, indexed by the colors

red, blue and yellow. It allows three types of surfaces (other than the default blank

surface), indexed by the colors brown, green and purple. Puck mass values are 1,

3, or 9, drawn with equal probability. Surface friction coefficients values are 0, 5

or 20, drawn with equal probability. Different pairwise forces (attraction, repulsion,

or no interaction) can act between each of the different pairs of puck types, drawn

with equal prior probability. Finally, a global force may push all pucks in a given

direction, either ↑, ↓,←,→ or 0, drawn with equal probability. We further restrict
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this space by considering only Level 1 theories in which all subclasses differ in their

latent properties (e.g. blue, red and yellow pucks must all have different masses).

While this restriction (together with the discretization) limits the otherwise-infinite

space of theories, it is still a very large space, containing 131,220 distinct theories 2.

Level 0: Observed data. The bottom level of our hierarchical model (Fig. 3-2)

is a concrete scenario, specified by the precise individual entities under observation

and the initial conditions of their dynamically updated properties. Each Level 1

theory can be instantiated in many different scenarios. The pucks’ initial conditions

were drawn from a zero-mean Gaussian distribution for positions and a Gamma

distribution for velocities, and filtered for cases in which the pucks began in overlap.

Once the entities and initial conditions are set, the positions and velocities of all

entities are updated according to the Level 1 theory’s specific force dynamics for T

time-steps, generating a path of multi-valued data points, d0, . . . , dT . The probability

of a path is simply the product of the probabilities of all the choices used to generate

the scenario. Finally, the actual observed positions and velocities of all entities are

assumed to be displaced from their true values by Gaussian noise.

3.2.1 Learning Physics as Bayesian inference

Having specified our overall generative model, and the particular version of it un-

derlying our “hockey puck” domain, we now turn to the question of learning. The
T1!

T2!

Theory 1 generates

a path closer to the

(noisy) data and

will have a higher

posterior than

Theory 2

model described so far allows us to formalize different kinds of learning as infer-

ence over different levels of the hierarchy. This approach can in principle be used

for reasoning about all levels of the hierarchy, including the general shape of forces

2More precisely, the cross product N(mass)! × N(frictioncoefficients)! × N(direction) ×
N(pairwisecombination)N(forceconstant) = 131, 220. Selecting the right theory in this space is equiv-
alent to correctly choosing 17 independent binary choices

87



and types of entities, the unobserved physical properties of entities, as well as the

existence, shape and parameters of unseen dynamical rules. Given observations, an

ideal learner can invert the generative framework to obtain the posterior over all

possible theories that could have produced the observed data. We then marginalize

out nuisance parameters (other irrelevant aspects of the theory) to obtain posterior

probabilities over the dynamic quantity of of interest.

Inference at multiple levels includes both continuous parameter estimation (e.g.

the strength of an inverse-square attractive force or the exact mass value of an object)

and more discrete notions of structure and form (e.g. the very existence and shape

of an attractive force, the fact that an object has a certain property). This parallels

a distinction between two modes of learning that appears in AI research as well as

cognitive development (where it is referred to as “parameter setting” and conceptual

change [25]). In general, inferring structure and form (or conceptual change) is seen

as harder than parameter estimation.

Learning at different levels could unfold over different spans of time depending

on the size and shape of the learning space, as well as on background knowledge and

the available evidence. Estimating the mass of an object from a well-known class in

a familiar setting could take adults under a second, while understanding that there is

a general gravitational force pulling things downwards given little initial data might

take infants several months to grasp [95].

In this chapter we consider learning at a mid-point between these two extremes,

between inferring basic physical knowledge and estimating parameters in a familiar

environment. Our experiments involve joint estimation of multiple parameters and

basic structure learning in the form of discrete structural relations (pairwise and

global forces), but not the more abstract conceptual change that could take longer

and require more evidence. The basic structure of noisy Newtonian mechanics is
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assumed present, and we examine learning at Level 1 - the sort of learning that

could happen over several seconds in a novel setting.

3.2.2 Simulation based approximations and summary statis-

tics

The Bayesian inversion of the generative model is in principle sufficient for inference

over any unknown quantity of interest in it. However, it can be computationally

demanding. In this section we consider a psychologically plausible approximation

to the generative model, one which combines summary statistics and the ability to

imagine new dynamic scenes.

In our experiments, each scenario contained exactly 4 pucks and 2 surfaces. This

restricts the number of hypotheses we need to consider to a maximum of 14,580 for

any one scenario, out of the larger in-principle space of 131,220. We can sum over all

the hypotheses in this domain, but such an approach is not practical for scaling to

larger domains and considering their the full hypothesis space, where integration is

generally intractable. Even for our restricted domain it is not psychologically plau-

sible a-priori that for any given dynamic stimuli people carry out massive inference

over all possible models that could have generated it, given the short time-frame

in which they can make judgments. Further, people can use more than local-path

information to assess different physical parameters. For example, if people think

two objects attract they might reasonably expect that over time the mean distance

between the objects should shrink.

This psychological intuition suggests a principled way of approximating the full

inference, following a statistical method known as Approximate Bayesian Compu-

tation (see [15] for a review). This approach is similar to ‘indirect inference’ [70],
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which assumes a model that can generate simulated data d′ given some parameters

θ, but does not try to estimate θ directly from observed data d. Rather, we first

construct an auxiliary model with parameters β and an estimator β̃ that can be

evaluated on both d and d′. The indirect estimate of the parameter of interest, θ̂, is

then the parameter that generated the simulated data whose estimator value β̃(d′)

is as close as possible to the estimator value of observed data, β̃(d) (for additional

technical details see for example] [70]).

Here we will use the following approximation: Our framework can generate sim-

ulated object paths given physical parameters θ, which we then wish to estimate.

We begin by drawing simulated data for all the models within the domain over all

scenarios, giving us several hundred thousand paths. For every physical parameter

θ we construct a set of summary statistics that can be evaluated on any given path,

and act as estimators. For example, the summary statistic avgPositionX(d) calcu-

lates the mean x-axis position of all objects over a given path, and can be used as

an estimator for the existence of a global force along the x-axis. We evaluate these

summary statistics for each of the parameter values over all the paths, obtaining an

empirical likelihood distribution which is smoothed with Gaussian kernels. The esti-

mated likelihood of a given parameter is then the likelihood of the summary statistic

for the observed data (see Fig. 3-3(a) and (b) for an illustration of this process).

Psychologically, this approximation corresponds to the following: people can

imagine dynamical scenes unfolding over time, but when reasoning about a spe-

cific scene they do not imagine how the same scene could have unfolded under all

the different unknown variables they are reasoning about. Instead, they compute

some simple summary statistics of the specific scene, e.g. how close are some pucks

on average. People then compare the value of these summary statistics to a repos-

itory which was calculated over many possible scenes. These repositories are built
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Figure 3-3: Approximations and the ideal observer for pairwise forces. For a given
scenario (a), many alternate paths are generated and compared to the observed path,
giving us a log likelihood for all theories. Posterior estimates are obtained by either
marginalizing over all theories (b), or by comparing the summary statistics of the
scenario to its empirical distribution over many simulations (c). We also consider a
simple combination of the methods (d).

up by using the same imagery capacities which allow people to imagine individual

scenes evolving over time, possibly in an off-line manner (as was the case in our mod-

els). This approximation relies on imagery, imagination and simulation, rather than

obtaining direct experience of tens of thousands of different scenarios and building

different features to use as classifiers of theories.

Our set of summary statistics included average position and total change along

the x-axis, average position and total change along the y-axis, mean pairwise distance
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between particles, total change in mean pairwise distance, average velocity, velocity

loss while on surfaces, amount of time spent at rest while on surfaces and the ratio of

pre- and post-collision velocities 3. These summary statistics are meant to capture

a large amount of possible perceptual data in the stimuli, but they are not meant to

be exhaustive. We take up the question of possible summary statistics again in the

general discussion.

While indirect inference and approximation techniques are useful, they have cer-

tain limitations, such as being insensitive to the particular conditions in outlying

scenarios. That is, for any given summary statistic it is easy to construct a sim-

ple scenario which is unlikely under the statistic’s likelihood, and yet people will

be able to reason about without difficulty. An interesting possibility is to combine

the strengths of the ideal observer model described in the previous section together

with summary statistics. Below we will consider for simplicity combinations of the

likelihoods derived from each approach.

Finally, we stress that this approximation technique is not an alternative to the

idea of inference through simulation, but rather a potentially necessary supplement

to it. The simulation-based approach and related approximation is in contrast to a

different possible way of approximately scoring theories, which is to learn through

experience associations between theories and many features. This would require

a great deal of experience indeed, which people are unlikely to come by for the

synthetic scenarios considered here for example. This contrast is similar to the

debates about top-down vs. bottom-up techniques in object perception, between

those who stress a more top-down approach that relies an on actual 3D object model,

3The velocity statistic was chosen based on heuristic models suggesting people are sensitive to
this data [56, 55]. The change in angle following a collision was also considered based on this work,
but it was found to actually be negatively correlated with mass judgments, which is in line with
the findings of [140].
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and those who stress bottom-up perceptual cues calculated from still images and used

for classification.

We now examine these various ways of physical reasoning, by considering people’s

performance on a novel dynamical task.

3.3 Experiment

3.3.1 Participants

Three hundred participants from the US were recruited via the Amazon Mechanical

Turk service, and were paid for their participation. Ten participants were excluded

from analysis for failing comprehension questions.

3.3.2 Stimuli

60 videos were used as stimuli, each lasting 5 seconds and depicting the dynamics of

several pucks moving and colliding.

We constructed the stimuli in the following manner: First, we defined a set of

10 worlds that differ in the physical rules underlying their dynamics, as well as in

the properties of the objects that appear in them. For example: in world1 blue

pucks have a large mass and there are no global or coupling forces, whereas in

world5 blue pucks are light and red pucks repel one another. A full description of

the underlying physical rules of each world is available at http://www.mit.edu/

~tomeru/physics2014/underlyingRules.pdf

Next, for each world we created 6 different scenarios that differ in their initial

conditions (i.e. the starting location and velocity of the pucks and surfaces), as

well as the particular objects used and the size of the surfaces. For example: the
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first scenario of world1 has red, yellow and blue pucks, whereas the third scenario

uses only red and yellow pucks. The initial conditions were drawn from random

distributions, and in practice most of the movies started with the pucks already

moving.

Using the dynamical rules of the world and starting from the initial conditions, we

unfolded the scenarios over 400 steps and created a video detailing the motion of the

objects over time 4. All stimuli used are available at http://www.mit.edu/~tomeru/

physics2014/stimuli/, and a static visual representation is shown in Fig. 3-4 and

3-5.

3.3.3 Procedure

Each participant saw 5 videos drawn from the set of 60 possible stimuli. The video-

participant pairing was done according to a Latin-square design, such that approxi-

mately thirty participants saw each video. The order of the 5 videos was randomized

for each participant.

Participants were informed what objects, forces and physical properties were

potentially present across all the stimuli, and also that objects of the same color

have the same properties. It was explained that objects can be heavy, medium or

light, and that each object type can potentially exert forces on other types: object

types either attract, repel or don’t interact with one another. Participants were

instructed to think of the videos as similar to ’hockey pucks moving over a smooth

white table-top’, and informed that patches on the plane can have different roughness.

Finally, they were told there may or may not be a global force in the world, pulling all

objects in a particular direction (north, south, east or west). An example experiment

4We used the classical Runge-Kutta method (RK4) for numerical integration to move the entities
forward in time.
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with the complete instructions and layout used is available at http://www.mit.edu/

~tomeru/physics-experiment-turk/physics-experiment.html.

After the presentation of each video participants rated the entire set of possible

physical properties. For each puck color, participants were asked ‘How massive are

[color] objects?’, with possible answers being ‘Light’, ‘Medium’, ‘Heavy’ or ‘Can’t

tell from movie’. For each surface color, participants were asked ‘How rough are

[color] patches?’, with possible answers being ‘As smooth as the table-top’, ‘A little

rough’, ’Very rough’ or ‘Can’t tell from movie’. For each puck color-pair combina-

tion, participants were asked ‘How do [color 1] and [color 2] objects interact?’, with

possible answers being ‘Attract’, ‘Repel’, ‘None’, or ‘Can’t tell from movie’. Finally,

participants were asked ‘Is a global force pulling the objects, and if so in what di-

rection is it pulling?’, with possible answers being ‘Yes, it pulls North’,‘Yes, it pulls

South’, ‘Yes, it pulls East’, ‘Yes, it pulls West’ or ‘No global force’. This gave us a

total of 13 questions per video, and 5 videos gave us a total of 65 data points per

participant. The ‘Can’t tell from video’ answer was supplied for cases where the

question is not relevant, for example a question regarding the mass of blue pucks

when no blue pucks are shown in the video.

3.3.4 Results

Overview

Participants correctly answered 54% of the questions on average, with a standard

error of 13%5. There was no statistically significant effect of learning over time

(52% correct on first 2 videos vs. 55% answers on last 2 videos). This is far from

5The exact number of potentially correct questions varied by scenario, as some questions were
not relevant for some stimuli, e.g. a question about the mass of blue pucks when no blue pucks
were shown.
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perfect, but we should not expect people to perform perfectly on a novel physical

task. Rather, it is an accomplishment on the participants’ part that they can adapt

to a novel dynamical task at all. The participants’ quantitative performance differed

depending on the particular physical property being considered.

Analysis

We analyzed the results in two ways:

Aggregating over the different scenarios: We obtained the empirical dis-

tribution of responses over the possible answers across all scenarios. We collapsed

across the property of color to consider four physical properties: mass, friction, pair-

wise forces and global forces. For mass and friction properties the responses were

clearly ordinal (light, medium, and heavy for mass; smooth, a little rough, and very

rough for friction) and the ground truth was a continuous ratio scale, thus we can

fit an ordinal logistic regression to the participant data, shown in Fig. 3-6a. The

figure displays the cumulative probability on the y-axis, and the relevant response is

color-coded according to the label. For example, on this regression the probability

people will answer ‘light’ when the true mass is in fact light (equal to 1) is 52%. The

probability they will answer ‘medium’ is 33% (85%-52%), and the probability that

they will answer ‘heavy’ is the remaining 15%. This is close to the empirical values

of 47%/37%/16%.

An ordinal regression cannot be used for the global and coupling forces, and so

Fig. 3-6c shows empirical confusion matrices, detailing the percentage of people that

chose each option given the ground truth.

Transforming responses per scenario For mass and friction we can assess

participant performance in a more refined way, by considering the distribution of re-
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sponses for each puck (and surface) in each one of the 60 scenarios, and transforming

this distribution into a quantitative prediction for that puck (or surface). We do this

by taking the expectation of the physical property relative to the empirical distribu-

tion (e.g., if 60% of participants rated a yellow puck in scenario 7 as ‘heavy’ and 40%

rated it as ’medium’, the converted participant rating is 0.6 ∗ 9 + 0.4 ∗ 3 = 6.6), and

comparing the results with the ground truth, shown in Fig. 3-6b. These sub-figures

plot the average rating of participants for mass/friction in a given scenario, compared

to the ‘ground truth’. Each black dot thus represents the average rating of 25-30

participants for mass/friction. The black solid line shows the average response for all

masses across all scenarios. Dotted colored lines connect masses/friction in the same

scenario, thus a rising line means a correct ranking. We next consider each property

separately.

Results by physical property

Mass: The upward trend of the lines in the logistic regression, shown in Fig. 3-6a,

shows that participants correctly shift in the probability of answering that a

mass is heavier when that is in fact the case. The linear correlation depicted

in Fig. 3-6b shows that although there is a large degree of variance for any

given mass, participants were able to overall correctly scale the masses. The

apparent ability to correctly rank and quantitatively scale multiple masses is

of particular interest, as experiments on inferring mass from collisions have

usually focused on judgments of mass ratios for two masses, often requiring

binary responses of ‘more/less massive’ (e.g. [55]).

Friction: Again we see a upward trend in the logistic regression, shown in Fig. 3-6a.

Compared with the regression for the masses, participants lean more heavily
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Figure 3-6: Analysis of participant performance using: (a) Ordinal logistic regres-
sion for mass (left) and friction (right). Shaded black areas represent uncertainty on
parameter estimates, colored patches show the ordinal responses. The upward trend
indicates a greater proportion of participants selecting the qualitatively correct re-
sponse as the quantitative value goes up, (b) Per scenario analysis with transformed
ratings for mass (left) and friction (right). Each black dot represents the average
rating of 25-30 participants. The solid line shows the average response across all
scenarios. Dotted lines connect mass/friction ratings in the same scenario, and so a
rising line means a correct ranking. (c) Confusion matrices for pairwise forces (top)
and global forces (bottom).

towards the lower end of the responses, perhaps because a ‘null’ response (no

friction) is easier to make than a graded response along a continuum. The lin-

ear correlation depicted in Fig. 3-6b shows that participants were also able to

correctly rank the roughness of the surfaces, though they could better distin-

guish between high- and low-friction surfaces than they were able to distinguish

low- and zero-friction surfaces. To our knowledge this is the first systematic

study of people’s ranking of the friction properties of surfaces in the intuitive
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physics literature.

Pairwise forces: As shown in Fig. 3-6c participants performed well on attraction

forces, correctly detecting them on average in 82% of the cases in which they

existed, while not reporting them on average in 88% of the cases in which

they did not exist. As for repulsion and non-forces, their performance was

above chance, although it was significantly worse than attraction. Note in

particular that there is an asymmetry in the column for non-forces, indicating

participants are confusing repulsion and non-existent forces, much more than

they are confusing attraction and non-forces (32% vs. 15%). We will return to

this point in the next section.

Global forces: As shown in Fig. 3-6c participants performed relatively well on

detecting global forces, identifying the correct global force 70% of the time on

average. Note that generally any force is more likely to be confused with a

null-force than it is with any other force. Also, note that if participants did

not correctly interpret the display as shown from a ‘bird’s eye view’, then the

’South’ direction could be interpreted as ’Down’ and so activate certain prior

expectations about a gravity force pulling in that direction. While this was

indeed the most correctly perceived force, it is not a large effect, and such an

explanation does not account for why a force pushing West, for example, is

better detected than one pushing East.
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3.4 Comparison to Ideal-Observer and Summary-

Statistic Approximations

For the Ideal Observer model (IO), we get predictions in the following way: For each

scenario, we fix the observed initial conditions and simulate the resulting paths for all

the relevant models. We then give each model a log-likelihood score by assessing the“Intuition”

– A participant

explaining how they

arrived at their

answers

deviation of its simulated path from the observed path. Finally, for each parameter

of interest we marginalize over the other parameters by summing them out, to obtain

a log-likelihood score for the relevant parameter (see Fig. 3-3a and b).

For the Simulation and Summary Statistics model (SSS), we get predictions by

following the procedure detailed at the end of Section 2. We also consider a simple

combination of these two approaches, by summing weighted log-likelihoods from both

approaches for any given physical parameter (IO&SSS) and renormalizing. These

various approaches are illustrated for a particular example in Fig. 3-3.

These parameter estimates give us predicted distributions over the responses for

each physical property for each scenario. We begin by collapsing across scenarios so

that we can compare the results to the logistic regressions and confusion matrices

of the participant data shown in Fig. 3-6a and c. Note that for each model there

is a free ‘noise’ parameter applying to the distributions across all scenarios, which

allows us to try and bring each model as close as possible to the participant data.

We consider ‘close’ as minimizing the RMSE between the different distributions of

the empirical confusion matrices (for pairwise and global forces) or the confusion

matrices predicted by the logistic regression (for mass and friction)6.

We begin by considering the ordinal logistic regression as applied to the different

6We also considered using KL-divergence as the distance metric, but that does not alter the
results.
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models, compared with mass and friction, shown in Fig. 3-6. For mass inference,

the SSS model outperforms the IO model and is quite close to people’s performance.

The combined IO&SSS model places its entire weight on the SSS model, gaining

no advantage from the IO model. For friction inference, we see that again the SSS

model outperforms the IO model in terms of how close it is to people’s judgments,

although here the combined IO&SSS outperforms both.

We next consider the confusion matrices. Of particular interest is the confusion

matrix for pairwise forces, where people showed an asymmetry in their confusion of

the absence of force. That is, when there actually is an absence of a pairwise force,

people incorrectly rate this as a repulsive force much more than they incorrectly

rate this as an attractive force (32% repulsive compared with 15% for attractive,

see Fig. 3-6c). We can understand this difference intuitively – an attractive force is “The only thing I

would question is

about the balls

interaction. When

they attract, that is

easy enough to

understand.”

– A participant

more likely to pull bodies closer together, which makes the attraction stronger and

so gives further evidence for the attractive force. A repulsive force pushes bodies

further apart, growing weaker and providing less evidence for its existence over time.

But such an asymmetry plays out over the entire dynamic scene. This asymmetry

does not come naturally out of the IO model, which sums up the error along local

deviations between a simulated trajectory given by a particular theory, and the

observed trajectory. In such a model the local error produced by a theory that

posits an attractive pairwise force is the same as that produced by a theory that

posits a repulsive force.

By contrast, a summary statistic looking at the average pairwise distance does

replicate this asymmetry. As illustrated in Fig. 3-3c, when we condition on the

absence of force (in gray) and on a repulsive force (red), we generally find an overlap

in the distribution of the summary statistic that is greater than that between the

absence of force and an attractive force (green). Again it is important to note that
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Figure 3-7: Comparison of model performance for properties (a) friction and mass
(b) pairwise forces and (c) global forces.
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the estimates from this summary statistic are informed by running many simulations

using the formal model. When we combine the IO model with the SSS we can

reproduce a confusion matrix that is similar to people’s performance, shown in Fig. 3-

6c. In particular, we reproduce the asymmetry between repulsion and the absence

of a pairwise force (27% repulsive compared with 15% for attractive). While this

asymmetry also exists for the SSS confusion matrix, the IO&SSS confusion matrix

is closer to that of people.

The second confusion matrix to consider is that of global forces. As mentioned,

for people one of the main points of interest was the confusion between any given

force and the absence of force, relative to any other force. Both the IO and SSS

models replicate this finding, although the IO model is in general closer to people.

Also, we interestingly find that the SSS model is quite bad at detecting the absence

of global forces, perhaps because none of the simple features we used account for a

null-force. Again, a combination of the two into an IO&SSS produces a confusion

matrix which is closest to that of people. We take up the question of other possible

features, including more force-based ones, in the discussion.

Having examined the aggregate results, we can refine our comparison by looking

at the response distributions the models give in each scenario and for each object

and property, correlated with those of people. For mass and friction coefficient

judgments, we can compare between people and the different approaches by again

converting posteriors into predicted mass and friction values. For global and pairwise

forces we can compare performance by correlating the predicted model posteriors for

each scenario and property with the posterior as calculated from normalized people

judgments.

The comparison of these various approaches with people is summarized in the

table below, showing correlations between people and different approaches. Note that
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we could theoretically have chosen the ‘noise’ parameter mentioned earlier to optimize

this linear correlation, however we decided to reduce the number of free parameters

and re-used the noise obtained from the previous comparison. We used a standard

bootstrap method to obtain estimated confidence intervals on these correlations [36].

Models
IO SSS IO&SSS

mass 0.50± 0.10 0.55± 0.08 0.55± 0.07
friction 0.54± 0.12 0.64± 0.11 0.65± 0.10
pairwise 0.56± 0.04 0.75± 0.03 0.81± 0.02
global 0.89± 0.02 0.85± 0.03 0.91± 0.02

Figure 3-8: Table showing the correlation between people’s judgments of different
physical properties and the different computational approaches: Ideal Observer (IO),
Summary Statistics Approximation (SSS), and a combination of the two (IO&SSS).
Correlations include 95% estimated confidence intervals, calculated using bootstrap
methods.

As can be seen from the table, while not improving the results in all cases, the

consistently best fit to people’s judgments is obtained by using a combination of the

ideal observer with simulation-based summary statistics methods. We show these

correlations in more detail in Fig. 3-9. This suggests that a combination of the

ideal observer with summary statistics discovered by generative simulations may be

a future fruitful approach, an idea we take up in the general discussion.

3.5 General Discussion

Humans acquire their most basic physical concepts early in development, but con-

tinue to enrich and expand their intuitive physics throughout life as they are ex-
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SSS IO & SSSIO

Figure 3-9: Correlations between people’s answers and those given by the different
models, for the four physical categories.

posed to more and varied dynamical environments. We have presented a hierarchical

Bayesian framework to explain how physical theories can be learned across multiple

timescales and levels of abstraction. Expressing theories using probabilistic programs

lets our approach effectively learn the forces and properties that govern how objects

interact in dynamic scenes unfolding over time. Given a challenging task of jointly

inferring several novel physical laws from short movies through observation alone,

people performed relatively well. Their performance was broadly in line with model

predictions, but they also made systematic errors suggestive of how a bottom-up
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summary-statistics-based approximate inference scheme might complement a more

top-down ideal Bayesian approach to learning.

We found that on a number of measures, a hybrid between top-down Bayesian

learning and bottom-up approximate inference emerged as the best empirical fit to

participants’ behavior in learning physical laws from dynamic scenes. This general

approach also makes good engineering sense: It can transcend inherent limitations of

each component method and serve as the basis for more robust real-world learning.

The ideal Bayesian observer uses evidence in an optimal way, but it is computa-

tionally intractable. The feature-based statistics are useful heuristics in many cases,

but are unable to handle situations that deviate from the norm 7. Also, summary

statistics in our setup do not replace the knowledge of a generative model, since

they themselves require the simulations of a generative model to be computed. The

computational intensity of the full ideal model is not as much of a problem in the com-

bined model, as it is meant to capture either training the approximate, bottom-up

inference in an off-line manner, or being used to score hypotheses once the bottom-up

inference has narrowed the possible space down.

We considered a simple way of linearly combining the top-down and bottom-up

models. While this approach performed reasonably, it does not get around the need

to search a large space of theories for the ideal observer. A more psychologically

plausible mechanism might include using the summary statistics of a given scenario

to pick out a small space of ‘reasonable’ theories and then use Bayesian inference

on this smaller space. For example, suppose the summary statistics of a scenario

7 For example, consider a scenario involving two attracting pucks that begin in full contact,
rotating around one another and moving together when one is struck. A normally useful statistic
for detecting attraction - the difference between the initial and final distance of the pucks - would be
useless here. The ideal observer and presumably people would have no problem detecting attraction
in such a case
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heavily bias in favor of an attractive force, less for the absence of force, and hardly

at all for a repulsive force. A Bayesian inference mechanism with finite resources

might then sample a handful of trajectories, most of them from theories that assume

attractive forces, few from theories assuming no forces, and hardly any trajectories

from theories assuming repulsive forces.

While we used of set of plausible summary statistics, it is not meant to be exhaus-

tive. The fact that the Ideal Observer model performed better than the Summary

Statistics Simulation model on some properties might be due to other unaccounted

for features that, when used correctly, would bring the SSS model closer to people’s

performance for those properties as well. In particular, given the relation between

forces and acceleration, it might be that more acceleration-based features would

improve performance on force-related inference 8.

There are many questions that are still open when considering the challenge of

inferring physical dynamics from perceptual scenes. In the rest of the discussion we

consider several of these questions, and how our framework might shed light on them.

First, to what extent are the computational processes underlying intuitive physics “A child who can

catch a ball knows

a good deal about

trajectories”

– B.F. Skinner

shared between adults and children? While it is clear that some physical knowledge

develops [124, 3], it is possible that the highest level of the framework, such as an

understanding of entities, forces and dynamics, is innate or early developing. Our

own experiments focused on adults, but one advantage of our novel stimuli is that

they can be easily adapted to experiments with young children or infants, using

simple responses or violation of expectation to indicate what they learn from brief

exposures.

8In order to facilitate the exploration of other features, the full participant responses as well as
the trajectory data for all stimuli will be available at http://www.mit.edu/~tomeru/physics2014/
data/
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Second, how does the language people use to talk about physical properties relate

to quantitative descriptions of those properties? In our task and in day-to-day phys-

ical descriptions we use words like “heavy” or “rough”, which describe continuous

qualities. These words are also graded adjectives with context-sensitive boundaries.

An addition to our model could include drawing such properties from continuous

distributions, such as different power-law distribution for the meaning of the words

“light” and “heavy”. We did not originally use such distributions because then even

the ideal optimal inference model must be approximated, as the space of continuous

concepts cannot be searched and scored exhaustively. Such an approximation raises

questions about the exact technique to use, without allowing us to compare between

ideal and approximate techniques, but it is possible and worth exploring9.

Third, what kind of physical forces, properties and dynamics do people find nat-

ural? What is intuitive in intuitive physics? In our framework we used pairwise

and global forces, friction, collisions and stable conserved properties shared across

objects, and people seemed able to reason about these relatively well. We believe

people are able to reason about spring- and string-like forces, as well as attachments

that maintain certain constraints on object relations. But it is entirely possible for

The unintuitive

trajectory of double

pendulum

our framework to generate and explore what we think will be non-intuitive dynam-

ical scenes that people will find difficult to reason about, such as time-dependent,

velocity-dependent forces that act according to non-conserved properties of objects.

However, these forces would be more difficult to express in traditional physics simu-

lations, suggesting a possible link to explore between simplicity in description length

and human reasoning in intuitive physics.

Finally, what are the perceptual inputs that go into physical reasoning? Are they

simply pixels that get grouped into ‘motion features’ used for bottom-up classifica-

9See for example [187] on approximate search in large theory spaces.
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tion, or are the inputs properties of objects? This debate parallels the top-down vs.

bottom-up questions of object recognition in visual perception, and like that debate

it might turn out to not be an either-or distinction [184, 102]. Useful motion features

might be real, but learned. Our framework suggests at least tentatively that new

features for rapid classification might be partially discovered by using synthetic data

which was generated by running forward many simulations from an intuitive physics

model of the world, rather than relying on experience in the absence of such a model.

3.6 Conclusion

The most exciting phrase to hear in science, the one that heralds new discoveries, is

not ’Eureka!’ but ’That’s funny...’

– Isaac Asimov

We have proposed that the combination of hierarchical Bayesian learning, an ex-

pressive representation for dynamical theories in terms of probabilistic programs, and

psychologically plausible feature-based approximate inference schemes, offers a pow-

erful framework for explaining how people can learn aspects of intuitive physics from

observations - even such sparsely observed data as a few seconds of several objects

in motion. Although participants were far from ideal observers in our experiments,

they were nonetheless able to make inferences about all aspects of a given scenario’s

physics at levels well above chance, and these inferences could serve as important

first steps guiding subsequent causal learning.

Much recent work on the development of intuitive theories has emphasized the

crucial role that active interventions - and not only observational data - play in

making causal learning possible. Likewise in science, experimental interventions -
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and not simply correlational studies - have long been the gold standard for testing

causal hypotheses. Yet controlled experiments and other interventions are not the

only mode by which scientists and children learn about the world. They may not

even be the most important. As Asimov suggests, every truly novel discovery in

science begins with a moment of observation, a ‘Thats funny...’ moment, when a

keen observer notices that something isn’t quite as she expected, and differs from

the usual course of events in a way that is not simply random but has some novel

structure that calls for out exploration, experimentation and ultimately explanation.

We believe that this is just as true in the development of intuitive theories as

in the development of formal scientific theories, and our studies here have aimed

to capture this first step of learning in the domain of intuitive dynamics. In our

experiments, the ‘Thats funny...’ moment might occur when two objects veer slightly

off their straight-line course towards one another, or when an object slows down more

than expected while moving over a colored surface. In our modeling, probabilistic

programs express the knowledge by which people imagine how a scene might play out

under different candidate physical laws or parameters, and how, if the scene departs

from the imagined path, parts of the original program might be adjusted to account

for the surprising data. These hypothetical adjustments become the hypotheses to

be tested in subsequent experiments, and with luck, the seeds of “Eureka!”.

3.7 Afterthought - Physics Engine Hacks for Psy-

chology

Physics engines do not fully simulate physics. Engineers, designers, physicists and

computer scientists working on physics engines aren’t concerned with getting a simu-
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lation to perfectly account for the movement of each atom10. The modelers often use

dynamics that are similar to Newtonian mechanics because that is the way the world

works, but they’re willing to also use shortcuts and hacks to get around problems of

memory and computation.

If we take seriously the idea that people have something like a game-engine or

physics-engine in their heads, then we should consider the concepts and workarounds

that people working on physics engines have developed independently of psychology.

Below I review a list of concepts that appear in many physics engines, and posit

possible connections between them and concepts in cognitive science.

This is not to suggest that all the inner workings of physics engines will have

counter-parts in the mind. But if engineers had to explicitly come up with clever

ways to simulate the world around them, perhaps the mind uses similar ways. At

the least, I hope this provides a fruitful avenue for future research.

Bodies and Shapes Many physics engines have a distinction between bodies and

shapes. The ‘body’ holds the physical properties (mass, position, velocity,

rotation, etc.), a bit like point-particles in physics, except that they can rotate.

A body has one or more ‘shapes’ attached to it. These are the visible graphical

bits. In 3D engines one can also find a distinction between 2 “meshes”. Again,

one is the actual ‘physical’ mesh, while the other is the the visible graphical one.

Think of a bee-hive. As a graphical representation one can use some drawing

Simplifying a shape

using a convex hull

or cylindrical body

or complicated mesh, but as a physical representation the engine will use some

convex hull that envelops the graphical shape and allows for fast calculations,

or possibly even a cylinder or pyramid. The simplified convex hull mesh, or

the approximating cylinder is what is used for collision detection and physical

10Unless the physicists are trying to simulate atoms.
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dynamics. It may be that when people simulate some object moving forward

in time (say, throwing a bee-hive) they only roughly approximate that object

using simpler meshes or bodies.

Dynamics and Collision Detection Most game and physics engines are split into

dynamics (for moving things along) and collisions (for when things move into

each other). Collisions seem fundamentally important, although they are de-

tected and solved differently in different engines. There are many different

hacks for noticing collisions (e.g. ‘casting’ trajectories geometrically into the

future and seeing what they run into) and solving them (e.g. placing springs

in between the colliding objects), but if physics engines exist in the mind, they

will also have to work out the problem of collisions.

Static and Dynamic A common way to save on computation time and memory

is to have a notion of “this body is not going to move”, whether it is the

background, the ground, a wall, etc. A static object is not just a very“Walls are special”

– Spelke (personal

communication)

heavy object that you have to keep solving the forces and mass-reaction for, it

is unmoving and does not participate in updating its own position properties.

Such static entities might not count as ‘Spelke-objects’, and therefore violations

of expectation tasks commonly associated with Spelke-objects would not apply

to them.

Sleeping and Awake While static bodies are those that are unlikely to move,

physics engines also don’t want to bother with dynamic bodies if possible.

For example, if a dynamic body hasn’t moved or contacted a body since the

last frame, there is no point in graphically re-rendering it. A body “wakes up”

when it collides with an awake body or has a joint destroyed. Psychologically,
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this notion might explain certain attention effects.

Constraints and Joints These are things that restrict system of bodies without

the need for explicit force simulation. Consider a two-bodied pulley system:

The physics engine does not work through the exact tension on the rope in or-

der to simulate a force that pulls one mass while the other goes down. Rather,

there is a general constraint that “when one object moves up, the other moves

down”. Common constraints include distance joints, prismatic joints and revo-

lution joints, but there are others. Again, such constraints seem psychologically

useful, and they are in line with suggestions from ‘qualitative physics’ [45].

Fluids and Hard Things Fluids are a category onto themselves in most engines,

and are trickier to simulate than single objects. There are many ways to

approximate fluids, and there is probably an entire research program of trying

to capture human reasoning about fluids by using different game engines. My

main point in mentioning this category is that engines find this hard, and

humans seem to find it hard as well. Stuff (fluids, sand piles, etc.) doesn’t

seem to obey ‘Spelke object’ principles [26, 83], but it might still be part of

the physical reasoning system, and hard to reason about for the same reason

engines have a hard time.

115



116



Chapter 4

Theory Learning as Stochastic

Search∗

If a person should say to you “I

have toiled and not found”, don’t

believe. If they say “I have not

toiled but found”, don’t believe. If

they say “I have toiled and found”,

believe. — Rabbi Itz’hak, Talmud

4.1 Introduction

For the Rabbis of old, learning was toil, exhausting work – a lesson which many

scientists also appreciate. Over recent decades, scientists have toiled hard trying to

understand learning itself: what children know when, and how they come to know

∗Joint work with Noah Goodman and Josh Tenenbaum
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it. How do children go from sparse fragments of observed data to rich knowledge of

the world? From one instance of a rabbit to all rabbits, from occasional stories and

explanations about a few animals to an understanding of basic biology, from shiny

objects that stick together to a grasp of magnetism – children seem to go far beyond

the specific facts of experience to structured interpretations of the world.

What some scientists found in their toil is themselves. It has been argued that

children’s learning is much like a kind of science, both in terms of the knowl-

edge children create, its form, content, and function, and the means by which

they create it. Children organize their knowledge into intuitive theories, abstract

coherent frameworks that guide inference and learning within particular domains

[23, 26, 191, 64, 123]. Such theories allow children to generalize from given evidence

to new examples, make predictions and plan effective interventions on the world.

Children even construct and revise these intuitive theories using many of the same

practices that scientists do [152]: searching for theories that best explain the data ob-

served, trying to make sense of anomalies, exploring further and even designing new

experiments that could produce informative data to resolve theoretical uncertainty,

and then revising their hypotheses in light of the new data.

Consider the following concrete example of theory acquisition which we will return

to frequently below. A child is given a bag of shiny, elongated, hard objects to

play with, and finds that some pairs seem to exert mysterious forces on each other,

pulling or pushing apart when they are brought near enough. These are magnets,

but she doesn’t know what that would mean. This is her first encounter with the

domain. To make matters more interesting, and more like the situation of early

scientists exploring the phenomena of magnetism in nature, suppose that all of the

objects have an identical metallic appearance, but only some of them are magnetic,

and only a subset of those are actually magnets (permanently magnetized). She may

118



initially be confused trying to figure out what interacts with what, but like a scientist

developing a first theory, after enough exploration and experimentation, she might

start to sort the objects into groups based on similar behaviors or similar functional

properties. She might initially distinguish two groups, the magnetic objects (which

can interact with each other) and the nonmagnetic ones (which do not interact).

Perhaps then she will move on to subtler distinctions, noticing that this very simple

theory doesn’t predict everything she observes. She could distinguish three groups,

separating the permanent magnets from the rest of the magnetic objects as well as

from the nonmagnetic objects, and recognizing that there will only be an interaction

if at least one of the two magnetic objects brought together is a permanent magnet.

With more time to think and more careful observation, she might even come to

discover the existence of magnetic poles and the laws by which they attract or repel

when two magnets are brought into contact. These are but three of a large number

of potential theories, varying in complexity and power, that a child could entertain

to explain her observations and make predictions about unseen interactions in this

domain.

Our goal here is to explore computational models for how children might acquire

and revise an intuitive theory such as this, on the basis of domain experience. Any

model of learning must address two kinds of questions: what, and how? Which

representations can capture the form and content of what the learner comes to know,

and which principles or mechanisms can explain how the learner comes to know

it, moving from one state of knowledge to another in response to observed data?

The main new contribution of this chapter addresses the ‘how’ question. We build

on much recent work addressing the ‘what’ question, which proposes to represent

the content of children’s intuitive theories as probabilistic generative models defined

over hierarchies of structured symbolic representations [177, 178, 90]. Previously the
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‘how’ question has been addressed only at a very high level of abstraction, if at all:

the principles of Bayesian inference explain how an ideal learner can successfully

identify an appropriate theory, based on maximizing the posterior probability of a

theory given data (as given by Bayes’ rule). But Bayes’ rule says nothing about the

processes by which a learner could construct such a theory, or revise it in light of

evidence. Here our goal is to address the ‘how’ of theory construction and revision at

a more mechanistic, process level, exploring cognitively realistic learning algorithms.

Put in terms of Marr’s three levels of analysis [111], previous Bayesian accounts of

theory acquisition have concentrated on the level of computational theory, while here

we move to the algorithmic level of analysis, with the aim of giving a more plausible,

practical and experimentally fertile view of children’s developmental processes within

the Bayesian paradigm.

Our work here aims to explain two challenges of theory acquisition in algorithmic

terms. First is the problem of making learning work: getting the world right, as

reliably as children do. As any scientist can tell you, reflecting on their own ex-

periences of toil, the ‘how’ of theory construction and revision is nontrivial. The

process is often slow, painful, a matter of starts and stops, random fits and bursts,

missteps and retreats, punctuated by occasional moments of great insight, progress

and satisfaction – the flashes of ’Aha!’ and ’Eureka!’. And as any parent will tell“I wonder why we

think faster than

we speak. Probably

so we can think

twice.”

– Calvin and

Hobbes

you, children’s cognitive development often seems to have much the same character.

Different children make their way to adult-like intuitive theories at very different

paces. Transitions between candidate theories often appear somewhat random and

unpredictable at a local level, prone to backtracking or “two steps forward, one

step back” behavior [158]. Yet in core domains of knowledge, and over long time

scales, theory acquisition is remarkably successful and consistent: different children

(at least within a common cultural context of shared experience) tend to converge
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on the same knowledge structures, knowledge that is much closer to a veridical ac-

count of the world’s causal structure than the infant’s starting point, and they follow

predictable trajectories along the way [26, 64, 190].

Our first contribution is an existence proof to show how this kind of learning

could work – a model of how a search process with slow, fitful and often frustrating

stochastic dynamics can still reliably get the world right, in part because of these

dynamics, not simply in spite of them. The process may not look very algorithmic,

in the sense of familiar deterministic algorithms such as those for long division,

finding square roots, or sorting a list, or what cognitive scientists typically think of

as a “learning algorithm”, such as the backpropagation algorithm for training neural

networks. Our model is based on a Monte Carlo algorithm, which makes a series

of randomized (but not entirely random) choices as part of its execution. These

choices guide how the learner explores the space of theories to find those that best

explain the observed data – influenced by, but not determined by, the data and the

learner’s current knowledge state. We show that such a Monte Carlo exploratory

search yields learning results and dynamics qualitatively similar to what we see in

children’s theory construction, for several illustrative cases.

Our second challenge is to address what could be called the “hard problem” of

theory learning: learning a system of concepts that cannot be simply expressed as

functions of observable sense data or previously available concepts – knowledge that

is not simply an extension or addition to what was known before, but that represents

a fundamentally new way to think. Developmental psychologists, most notably Susan

Carey [26], have long viewed this problem of conceptual change or theory change as

one of the central explanatory challenges in cognitive development. To illustrate,

consider the concepts of “magnet” or “magnetic object” or “magnetic pole” in our

scenario above, for a child first learning about them. There is no way to observe an
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object on its own and decide if it falls under any of these concepts. There is no way

to define or describe either “magnet” or “magnetic object” in purely sensory terms

(terms that do not themselves refer to the laws and concepts of magnetism), nor to

tell the difference between a “north” and a “south” magnetic pole from perception

alone. How then could these notions arise? They could be introduced in the context

of explanatory laws in a theory of magnetism, such as “Two objects will interact

if both are magnetic and at least one is a magnet”, or “Magnets have two poles,

one of each type, and opposite types attract while like types repel.” If we could

independently identify the magnets and the magnetic objects, or the two poles of

each magnetic object and their types, then these laws would generate predictions that

could be tested on observable data. But only by virtue of these laws’ predictions can

magnets, magnetic objects, or magnetic poles even be identified or made meaningful.

And how could one even formulate or understand one of these laws without already

having the relevant concepts?

Theory learning thus presents children with a difficult joint inference task – a

“chicken-and-egg” problem – of discovering two kinds of new knowledge, new con-

cepts and new laws, which can only be made sense of in terms of each other: the

laws are defined over the concepts, but the concepts only get their meaning from

the roles they play in the laws. If learners do not begin with either the appropriate

concepts or the appropriate laws, how can they end up acquiring both successfully?

This is also essentially the challenge that philosophers have long studied of grounding

meaning in conceptual role or inferential role semantics [14, 77, 78, 39, 41]. Tradi-

tional approaches to concept learning in psychology do not address this problem,

nor do they even attempt to [20, 163, 137]. The elusiveness of a satisfying solution

has led some scholars, most famously Jerry Fodor, to a radical skepticism on the

prospects for learning genuinely new concepts, and a view that most concepts must
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be innate in some nontrivial way [42, 43]. Carey [26] has proposed a set of informal

“bootstrapping” mechanisms for how human learners could solve this problem, but

no formal model of bootstrapping exists for theory learning, or concept learning in

the context of acquiring novel theories.

We will argue that the chicken-and-egg problem can be solved by a rational

learner but must be addressed in algorithmic terms to be truly satisfying: a purely “If concept learning

is as Hypothesis

Formation

understands it,

there can be no

such thing.”

– Fodor, LOT2

computational-level analysis will always fail for the Fodorian skeptic, and will fail to

make contact with the crux of the bootstrapping problem as Carey [26] frames it,

since for the ideal learner the entire space of possible theories, laws and concepts, is

in a sense already available from the start. An algorithmic implementation of that

same ideal learning process can, however, introduce genuinely new concepts and laws

in response to observed data. It can provide a concrete solution to the problem of

how new concepts can be learned and can acquire meaning in a theory of inferential

role semantics. Specifically, we show how a Monte Carlo search process defined over

a hierarchically structured Bayesian model can effectively introduce new concepts

as blank placeholders in the context of positing a new candidate explanatory law or

extending an existing law. The new concept is not expressed in terms of pre-existing

concepts or observable data; rather it is posited as part of a candidate explanation,

together with pre-existing concepts, for observed data. In testing the candidate law’s

explanatory power, the new concepts are given a concrete interpretation specifying

which entities they are most likely to apply to, assuming the law holds. If the new

or modified law turns out to be useful – that is, if it leads to an improved account

of the learner’s observations, relative to their current theory – the law will tend to

be retained, and with it, the new concept and its most likely concrete grounding.

The rest of the chapter is organized as follows. We first present a nontechnical

overview of the “what” and “how” of our approach to theory learning, and con-
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trast it with the most well-known alternatives for modeling cognitive development

based on connectionism and other emergentist paradigms. We then describe our

approach more technically, culminating in a Markov Chain Monte Carlo (MCMC)

search algorithm for exploring the space of candidate theories based on proposing

random changes to a theory and accepting probabilistically those changes that tend

to improve the theory. We highlight two features that make the dynamics of learn-

ing more efficient and reliable, as well as more cognitively plausible: a prior that

proposes new theoretical laws drawn from law templates, biasing the search towards

laws that express canonical patterns of explanation useful across many domains, and

a process of annealing the search that reduces the amount of random exploration

over time. We study the algorithm’s behavior on two case studies of theory learning

inspired by everyday cognitive domains: the taxonomic organization of object cat-

egories and properties, and a simplified version of magnetism. Finally, we explore

the dynamics of learning that arise from the interaction between computational-level

and algorithmic-level considerations: how theories change both as a function of the

quantity and quality of the learner’s observations, and as a function of the time

course of the annealing-guided search process, which suggests promising directions

for future experimental research on children’s learning.

4.2 A nontechnical overview

A proposal for what children learn and a proposal for how they learn it may be log-

ically independent in some sense, but the two are mutually constraining. Richer,

more structured accounts of the form and content of children’s knowledge tend to

pose harder learning challenges, requiring learning algorithms that are more sophis-

ticated and more costly to execute. As we explain below, our focus on explaining
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the origins of children’s intuitive theories leads us to adopt relatively rich abstract

forms of knowledge representations, compared to alternative approaches to modeling

cognitive development, such as connectionism. This leaves us with relatively harder

learning challenges – connectionists might argue, prohibitively large. But we see

these challenges as inevitable: Sooner or later, computational models of develop-

ment must face them. Perhaps for the first time, we can now begin to see what their

solution might look like, by bringing together recent ideas for modeling the form

and content of theories as probabilistic generative models over hierarchies of sym-

bolic representations [86, 87, 63] with tools for modeling the dynamics of learning as

exploratory search based on stochastic Monte Carlo algorithms.

4.2.1 The ‘What’: Modeling the form and content of chil-

dren’s theories as hierarchical probabilistic models over

structured representations

As a form of abstract knowledge, an intuitive theory is similar to the grammar of

a language [176]: The concepts and laws of the theory can be used to generate ex-

planations and predictions for an infinite (though constrained) set of phenomena in

the theory’s domain. We follow a long tradition in cognitive science and artificial in-

telligence of representing such knowledge in terms of compositional symbol systems,

specifically predicate logic that can express a wide range of possible laws and con-

cepts [42, 44, 141]. Embedding this symbolic description language in a hierarchical

probabilistic generative model lets us bring to bear the powerful inductive learning

machinery of Bayesian inference, at multiple levels of abstraction [72, 178].

Fig. 4-1 illustrates this framework. We assume a domain of cognition is given,

comprised of one or more systems of entities and their relations, each of which gives
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rise to some observed data. The learner’s task is to build a theory of the domain:

a set of abstract concepts and explanatory laws that explain the observed data for

each system in that domain. The learner is assumed to have a hypothesis space of

possible theories generated by (and constrained by) some “Universal Theory”. We

formalize this Universal Theory as a probabilistic generative grammar, essentially a

probabilistic version of a language of thought [42]. Within this universal language,

the learner constructs a specific theory that can be thought of as a more specific

language for explaining the phenomena of the given domain.

In principle, an ideal learner should consider all possible theories expressible in the

language of thought and weigh them against each other in light of observed evidence.

In practice, there are infinitely many candidate theories and it will be impossible to

explicitly consider even a small fraction of them. Explaining how a learner proposes

specific candidate theories for evaluation is a task for our algorithmic-level account

(see below under ‘How’).

Candidate theories are evaluated using Bayes’ rule to assess how likely they are to

have generated the observed data. Bayes’ rule scores theories based on the product

of their prior probabilities and their likelihoods. The prior reflects the probability of

generating the laws and concepts of a theory a priori from the generative grammar,

independent of any data to be explained. The likelihood measures the probability of

generating the observed data given the theory, independent of the theory’s plausibil-

ity. Occam’s razor-like considerations emerge naturally from a Bayesian analysis: the

prior will be highest for the simplest theories, whose laws can be generated with the

fewest number of a priori stipulations, while the likelihood will be highest for theories

whose laws allow a domain to be described accurately and compactly, generating the

observed data with a spare set of minimal facts.

The fit of a theory to data cannot be evaluated directly; its laws express the
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abstract principles underlying a domain but no specific expectations about what is

true or false. One level below the theory in the hierarchical framework, the learner

posits a logical model of each observed system in the domain. The logical model,

or “model” for short, specifies what is true of the entities in a particular system in

ways consistent with and constrained by the theory’s abstract laws. Each model

can be thought of as one particular concrete instantiation of the abstract theory. It

generates a probability distribution over possible observations for the corresponding

system, and it can be scored directly in terms of how well those predictions fit the

actual data observed.

As a concrete example of this framework, consider again the child learning about

the domain of magnetism. She might begin by playing with a few pieces of metal and

notice that some of the objects interact, exerting strange pulling or pushing forces on

each other. She could describe the data directly, as “Object a interacts with object

j”, “Object i interacts with object j”, and so on. Or she could form a simple theory,

in terms of abstract concepts such as magnet, magnetic object and non-magnetic

object, and laws such as ”Magnets interact with other magnets”, “Magnets interact

with magnetic objects”, and “Interactions are symmetric”. It is important to note

A B C D E F
A
B
C
D
E
F

X
X

X

X

X
X

X

X

A table tallying

interactions cannot

generalize or

compress data

that terms like magnet convey no actual information about the object, and they are

simply labels. Systems in this domain correspond to specific subsets of objects, such

as the set of objects a, ..., i in Fig. 4-1. A model of a system specifies the minimal

facts needed to apply the abstract theory to the system, in this case which objects

are magnetic, which are magnets, and which are non-magnetic. From these core

facts the laws of the theory determine all other true facts – in our example, this

means all the pairwise interactions between the objects: e.g., objects i and j, being

magnets, should interact, but i and e should not, because the latter is non-magnetic.

Finally, the true facts generate the actual data observed by the learner via a noisy
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sampling process, e.g. observing a random subset of the object pairs that interact,

and occasionally misperceiving an object’s identity or the nature of an interaction.

While the abstract concepts in this simplified magnetism theory are attributes of

objects, more complex relations are possible. Consider for example a theory of taxon-

omy, as in Collins and Quillian’s classic model of semantic memory as an inheritance

hierarchy [31]. Here the abstract concepts are is a relations between categories and

has a relations between categories and properties. The theory underlying taxonomy

has two basic laws: “The is a relation is transitive” and “The has a relation inher-

its down is a relations” (laws 3 and 4 on the “Taxonomy” column of Fig. 4-1). A

system consists of a specific set of categories and properties, such as salmon, eagle,

breathes, can fly, and so on. A model specifies the minimal is a and has a relations,

typically corresponding to a tree of is a relations between categories with properties

attached by has a relations at the broadest category they hold for: e.g., “A canary

is a bird”, “A bird is an animal”, “An animal can breathe”, and so on. The laws

then determine that properties inherit down chains of is a relations to generate many

other true facts that can potentially be observed, e.g., “A canary can breathe”.

The analogy between learning a theory for a domain and learning a grammar for

a natural language thus extends down through all levels of the hierarchy of Fig. 4-1.

A logical model for a system of observed entities and relations can be thought of as

a parse of that system under the grammar of the theory, just as the theory itself

can be thought of as a parse of a whole domain under the grammar of the universal

theory. In our hierarchical Bayesian framework, theory learning is the problem of

searching jointly for the theory of a domain and models of each observed system in

that domain that together best parse all the observed data.1

1The idea of hierarchical Bayesian grammar induction, where the prior on grammars is itself
generated by a grammar (or “grammar grammar”), dates back at least to the seminal work of
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Previous applications of grammar-based hierarchical Bayesian models have shown

how, given sufficient evidence and a suitable theory grammar, an ideal Bayesian

learner can identify appropriate theories in domains such as causality [72, 63], kinship

and other social structures [87], and intuitive biology [176]. While our focus in this

chapter is the algorithmic level – the dynamics of how learners can search through

a space of theories – we have found that endowing our theory grammars with one

innovation greatly improves their algorithmic tractability. We make the grammar

more likely to generate theories with useful laws by equipping it with law templates,

or forms of laws that capture canonical patterns of coherent explanation arising in

many domains. For example, law templates might suggest explanations for when

an observed relation r(X, Y ) holds between entities X and Y (e.g., X attracts Y ,

X activates Y , X has Y ) in terms of latent attributes of the objects, f(X) and

g(Y ), or in terms of some other relation s(X, Y ) that holds between them, or some

combination thereof: perhaps r(X, Y ) holds if f(X) and s(X, Y ) are both true.

Explanatory chains introducing novel objects are also included among the templates:

perhaps r(X, Y ) holds if there exists a Z such that s(X,Z) and s(Z, Y ) hold. As we

explain below, making these templates explicit in the grammar makes learning both

more cognitively plausible and much faster.

The most familiar computational alternative to structured Bayesian accounts of

cognitive development are connectionist models, and other emergentist approaches

[115]. Instead of representing children’s abstract knowledge in terms of explicit sym-

bol systems, these approaches attribute abstract knowledge to children only implic-

itly as an ‘emergent’ phenomenon that arises in a graded fashion from interactions

among more concrete, lower-level non-symbolic elements – often inspired loosely by

neuroscience. Dynamical systems models view the nervous system as a complex adap-

Feldman and colleagues [38].
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tive system evolving on multiple timescales, with emergent behavior in its dynamics.

“Adjust the

parameters of the

mind in proportion

to the extent to

which their

adjustment can

produce a

reduction...between

expected and

observed events”

– McClleland

Connectionist models view children’s knowledge as embedded in the strengths of

connections between many neuron-like processing units, and treat development as

the tuning of these strengths via some experience-dependent adjustment rule. Con-

nectionists typically deny that the basic units of traditional knowledge representation

– objects, concepts, predicates, relations, propositions, rules and other symbolic ab-

stractions – are appropriate for characterizing children’s understanding of the world,

except insofar as they emerge as approximate higher-level descriptions for the be-

havior dictated by a network’s weights.

While emergentist models have been well-received in some areas of development,

such as the study of motor and action systems [115], emergentist models of the

structure and origins of abstract knowledge [137] have not been widely embraced

by developmentalists studying children’s theories [64, 26]. There is every reason to

believe that explicit symbolic structure is just as important for children’s intuitive

theories as for scientists’ more formal theories – that children, like scientists, cannot

adequately represent the underlying structure of a domain such as physics, psychol-

ogy or biology simply with a matrix of weights in a network that maps a given set of

inputs to a given set of outputs. Children require explicit representations of abstract

concepts and laws in order to talk about their knowledge in natural language, and to

change and grow their knowledge through talking with others; to reason causally in

order to plan for the future, explain the past, or imagine hypothetical situations; to

apply their knowledge in novel settings to solve problems that they have never be-

fore encountered; and to compose abstractions recursively, as in forming beliefs about

others’ beliefs about the physical world and how those beliefs might be different than

one’s own.
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Despite these limitations, connectionist models have been appealing to develop-

mentalists who emphasize the processes and dynamics of learning more than the

nature of children’s knowledge representations [156, 115]. This appeal may come

from the fact that when we turn from the ‘what’ to the ‘how’ of children’s learning,

connectionist models have a decided advantage: learning in connectionist systems

appears much better suited to practical algorithmic formulation, and much more

tractable, relative to structured probabilistic models or any explicitly symbolic ap-

proach. As we explain below, making the ‘how’ of learning plausible and tractable

may be the biggest challenge facing the structured probabilistic approach.

4.2.2 The ‘How’: Modeling the dynamics of children’s the-

ory learning as stochastic (Monte Carlo) exploratory

search

It is helpful to imagine the problem children face in learning as that of moving over

a “knowledge landscape”, where each point represents a possible state of knowledge

and the height of that point reflects the value of that knowledge-state – how well it

allows the child to explain, predict, and act on their world. Such a picture is useful

in showing some of the differences between our approach to cognitive development

and the connectionist and emergentist alternatives, and it highlights the much more

serious ‘how’ challenge that confronts structured probabilistic models.

Viewed in landscape terms (Fig. 4-2), connectionist models typically posit that

children’s knowledge landscape is continuous and smooth, and this matters greatly

for the mechanisms and dynamics of learning. Learning consists of traversing a

high-dimensional real-valued “weight space”, where each dimension corresponds to

the strength of one connection in a neural network. Fig. 4-2 depicts only a two-
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dimensional slice of the much higher dimensional landscape corresponding to the

three-layer network shown. The height of the landscape assigned to each point in

weight space – each joint setting of all the network’s weights – measures how well

the network explains observed data in terms of an error or energy function, such

as a sum-of-squared-error expression. The topology of these landscapes is simple

and uniform: at any point of the space, one can always move along any dimension

independently of every other, and changing one parameter has no effect on any other.

The geometry is also straightforward: neighboring states, separated by small changes

in the weights or parameters, typically yield networks with very similar input-output

functionality. Thus a small move in any direction typically leads to only a small rise

or fall in the error or energy function.

Weight Space

Higher Energy/Error

Lower Energy/Error

Weight Space

Input

Hidden

Output

1. Current weights 

3. Move along gradient

2. Find gradient

4. New weights 

Input

Hidden

Output

Figure 4-2: A hypothetical neural network and a weight space spanning the possible
values of two particular connections. Steps 1-4 show the sequence of a learning
algorithm in such a space: the calculation of a gradient and the move to a lower
point. This corresponds to a shift in the network’s connection weights and a smaller
error on the output.

This geometry directly translates into the dynamics of learning: the Hebb rule,

the Delta Rule, Backpropagation and other standard weight-adjustment rules [116]

can be seen as implementing gradient descent – descending the error or energy land-

scape by taking small steps along the steepest direction – and it can be proven that
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this dynamic reliably takes the network to a local minimum of error, or a locally

best fitting state of knowledge. In certain cases, particularly of interest in contem-

porary machine learning systems [13], the error landscape can be designed to have a

geometric property known as convexity, ensuring that any local minimum is also a

global minimum and thus that the best possible learning end-state can be achieved

using only local weight-adjustment rules based on gradient descent. Thus learning

becomes essentially a matter of “rolling downhill”, and is just as simple. Even in

cases where there are multiple distinct local minima, connectionist learning can still

draw on a powerful toolkit of optimization methods that exploit the fact that the

landscape is continuous and smooth to make learning relatively fast, reliable and

automatic.

Now consider the landscape of theory learning from the perspective of our struc-

tured Bayesian approach, and it should become clear how much more difficult the

problem is (Fig. 4-3). Each point on the landscape now represents a candidate do-

main theory expressed in terms of one or more laws in first-order logic and one or

more abstract concepts indicated by a blank predicate (e.g., f(X), g(X)). Two pos-

sibilities for a simple theory of magnetism are shown, labeled Theory B and Theory

C (these will be explained in much greater detail below). The height of the surface

at a given point represents how well the corresponding theory is supported by the

observed data, which we measure as the Bayesian posterior probability. (Note that

in contrast to Fig. 4-2, where “lower is better”, here “higher is better”, and the goal

is to seek out maxima of the landscape, not minima.) Unlike the weight space shown

in Fig. 4-2, this portrait of a “theory space” as two-dimensional is only metaphorical:

it is not simply a lower-dimensional slice of a higher-dimensional space. The space

of theories in a language of thought is infinite and combinatorially structured with

a neighborhood structure that is impossible to visualize faithfully on a page.

134



Higher Probability

Lower Probability

1. Theory A 
 interacts(X,Y)           p(X)    p(Y) 
 interacts(X,Y)           p(X)    q(Y)
 interacts(X,Y)           interacts(Y,X)

Theory Space

3. Compare current and
    proposed theories 

Theory Space

4. Probabilistically
    accept proposal 

2. Theory B
 interacts(X,Y)           p(X)    q(Y)
 interacts(X,Y)           interacts(Y,X)

Figure 4-3: Schematic representation of the learning landscape within the domain
of simple magnetism. Steps 1-4 illustrate the algorithmic process in this framework.
The actual space of of theories is discrete, multidimensional and not necessarily
locally connected.

At the level of computational theory, we can imagine an ideal Bayesian learner

who computes the full posterior probability distribution over all possible theories,

that is, who grasps this entire landscape and assesses its height at all points in

parallel, conditioned on any given observed data set. But this is clearly unrealistic

as a starting point for algorithmic accounts of children’s learning, or any practical

learning system with limited processing resources. Intuition suggests that children

may simultaneously consider no more than a handful of candidate theories in their

active thought, and developmentalists typically speak of the child’s current theory

as if, as in connectionist models, the learner’s knowledge state corresponds to just a

single point on the landscape rather than the whole surface or posterior distribution.

The ideal Bayesian learner is in a sense similar to a person who has “not toiled but

found” from the opening epigraph: the entire hypothesis space is already defined

and the learner’s task is merely to reshuffle probability over that space in response

to evidence. The actual child must toil and construct her abstract theory, piece by

piece, generalizing from experience.

Considering how a learner could move around on this landscape in search of the
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best theory, we see that most of the appealing properties of connectionist knowledge

landscapes – the features that support efficient learning algorithms – are not present

here. The geometry of the landscape is far from smooth: A small change in one of

the concepts or laws of a theory will often lead to a drastic rise or fall in its plausi-

bility, leading to a proliferation of isolated local maxima. There is typically no local

information (such as a gradient) diagnostic of the most valuable directions in which

to move. The landscape is even more irregular in ways that are not easily visualized.

There is no uniform topology or neighborhood structure: the number and nature

of variants that can be proposed by making local changes to the learner’s current

hypothesis vary greatly over the space, depending on the form of that hypothesis.

Often changing one aspect of a theory requires others to be changed simultaneously

in order to preserve coherence: for instance, if we posit a new abstract concept in

our theory, such as the notion of a magnet, or if we remove a conceptual distinction

(such as the distinction between magnets and magnetic objects), then one or more

laws of the theory will need to be added, removed or redefined at the same time.

Artificial intelligence has a long history of treating learning in terms of search

through a discrete space of symbolic descriptions, and a wide variety of search algo-

rithms have been proposed to solve problems such as rule discovery, concept learning

and generalization, scientific law discovery, and causal learning [125, 121, 18, 127,

171]. For some of these problems, there exist systematic search algorithms that can

be as fast and reliable as the gradient-based optimization methods used in connec-

tionist learning [121, 127, 171]. But for problems like scientific discovery [18], or

our formulation of children’s theory learning, the best known search algorithms are

not like this. Much like child learners, we suggest, these algorithms are slow, unre-

liable, and unsystematic (indeed often random), but with enough patience they can

be expected to converge on veridical theories.
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The specific search algorithm we describe is based on widely used methods in

statistics and AI for approximating intractable Bayesian inferences, known as Markov

Chain Monte Carlo (MCMC). MCMC algorithms have recently been proposed as

models for the short-timescale dynamics of perceptual inferences in the brain [53, 173,

122], but they are also well-suited to understanding the much longer-term dynamics

of learning.

The remainder of this section sketches how our MCMC algorithm answers the

two main challenges we set out at the start of this chapter: explaining how chil-

dren can reliably converge on veridical theories, given their constrained cognitive

resources and a learning dynamic that often appears more random than systematic,

and explaining how children can solve the hard “chicken-and-egg” inference problem

of jointly learning new concepts and new laws defined in terms of those concepts.

The heart of MCMC theory learning is an iterative loop of several basic steps,

shown in Fig. 4-3. The learner begins at some point in the theory landscape (e.g.

theory B or C in Fig. 4-3). The learner then proposes a possible move to a different

theory, based on modifying the current theory’s form: adding/deleting a law or set of

laws, changing parts of a law or introducing a new concept, and so on. The proposed

and current theories are compared based on evaluating (approximately) how well they

explain the observed data (i.e., comparing the relative heights of these two points

on the theory landscape). If the proposed theory scores higher, the learner accepts

it and moves to this new location. If the proposal scores lower, the learner may still

accept it or reject it (staying at the same location), with probability proportional

to the relative scores of the two theories. These steps are then repeated with a new

proposal based on the new current location.

From the standpoint of MCMC, randomness is not a problem but rather an es-

sential tool for exploring the theory landscape. Because MCMC algorithms consider
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only one hypothesis at a time and propose local modifications to it, and there are no

generally available signals (analogous to the error gradient in connectionist learning)

for how to choose the best modification of the current hypothesis out of an infinite

number of possible variations, the best learners can do is to propose variant theories

to explore chosen in a randomized but hopefully intelligent fashion. Our algorithm

proposes variants to the current hypothesis by replacing a randomly chosen part of

the theory with another random draw from the probabilistic generative grammar for

theories (that is, the prior over theories). This process could in principle propose

any theory as a variant on any other, but it is naturally biased towards candidates

that are most similar to the current hypothesis, as well as those that are a priori

simpler and more readily generated by the grammar’s templates for coherent laws.

The use of law templates is crucial in focusing the random proposal mechanism on

the most promising candidates. Without templates, all of the laws proposed could

still have been generated from a more general grammar, but they would be much

less likely a priori; learners would end up wasting most of their computational effort

considering simple but uesless candidate laws. The templates make it likely that any

random proposal is at least a plausibly useful explanation, not just a syntactically

well-formed expression in the language of thought.

The decision of whether to accept or reject a proposed theory change is also made

in a randomized but intelligently biased fashion. If a proposed change improves the

theory’s account of the data, it is always accepted, but sometimes a change that

makes the theory worse could also be accepted. This probabilistic acceptance rule

helps keep the leaner from becoming trapped for too long in poor local maxima of

the theory landscape [57].

Although we use MCMC as a search algorithm, aiming to find the best theory,

the algorithm’s proper function is not to find a single optimal theory but rather
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to visit all theories with probability proportional to their posterior probability. We

can interpolate between MCMC as a posterior inference technique and MCMC as a

search algorithm by annealing – or starting with more stochastic (or noisy) search

moves and “lowering the temperature”, making the search more deterministic over

time [97, 166]. This greatly improves convergence to the true theory. Such an

algorithm can begin with little or no knowledge of a domain and, given enough

time and sufficient data, reliably converge on the correct theory or at least some

approximation thereof, corresponding to a small set of abstract predicates and laws.

Annealing is also responsible for giving the MCMC search algorithm some of

its psychologically plausible dynamics. It gives rise to an early high-temperature

exploration period characterized by a large number of proposed theories, most of

which are far from veridical. As we see in young children, new theories are quick to be

adopted and just as quick to be discarded. As the temperature is decreased, partially

The idea of

annealing comes

from metallurgy:

“The smith dips

[the axe] in cool

water to temper it,

strengthening the

iron” (The

Odyssey)

correct theories become more entrenched, it becomes rarer for learners to propose

and accept large changes to their theories, and the variance between different theory

learners goes down. As with older children, rational learners at the later stages of an

annealed MCMC search tend to mostly agree on what is right, even if their theories

are not perfect. Without annealing, MCMC dynamics at a constant temperature

could result in a learner who is either too conservative (at low temperature) or too

aggressive (at high temperature) in pursuing new hypotheses – that is, a learner who

is prone to converge too early on a less-than-ideal theory, or to never converge at all.

Figures 4-6a and 4-7a illustrate these learning dynamics. (these are explained in

detail in the next sections). On average, learners are consistently improving. On

average, they are improving gradually. But individually, learners often get worse

before they get better. Individually, they adopt theories in discrete jumps, signifying

moments of fortuitous discovery. Such dynamics on the level of the individual learner
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are more in line with discovery processes in science and childhood than are the

smoother dynamics of gradient descent on a typical connectionist energy landscape.

Critics might reasonably complain that MCMC methods are slow and unreliable

by comparison. But theory construction just is a difficult, time-consuming, painful

and frustrating business – in both science and children’s cognition. We can no

more expect the dynamics of children’s learning to follow the much tamer dynamics

of gradient learning algorithms than we could expect to replace scientists with a

gradient-based learning machine and see the discoveries of new concepts and new

scientific laws emerging automatically. 2 Currently we have no good alternative to

symbolic representational machinery for capturing intuitive theories, and no good

alternative to stochastic search algorithms for finding good points in the landscape

of these symbolic theories.

What of the “hard problem of theory learning”, the challenge of jointly learn-

ing new laws and new concepts defined only in terms of each other? Our MCMC

search unfolds in parallel over two levels of abstraction: an outer loop in the space

of theories, defined by sets of abstract laws; and an inner loop in the space of expla-

nations or models generated by the theory for a particular domain of data, defined

by groundings of the theory’s concepts on the specific entities of the domain. This
ןפָוֹאהָ �וֹתבְּ ,ןפַוֹאהָ היֶהְיִ רשֶׁאֲכַּ ,םהֶישֵׂעֲמַוּ ,םהֶיאֵרְמַוּ

׳זט ׳א לאקזחי --

two-level search lets us address the “chicken and egg” challenge by first proposing

new laws or changes to existing laws of a theory in the outer search loop; these

new laws can posit novel but ‘blank’ concepts of a certain form, whose meaning is

2It is worth noting that not all connectionist architectures and learning procedures are confined to
gradient-based methods operating on fixed parametric architectures. In particular the constructivist
neural networks explored by Tom Shultz and colleagues [156] are motivated by some of the same
considerations that we are, aiming to capture the dynamics of children’s discovery with learning rules
that implement a kind of exploratory search. These models are still limited in their representational
power, however: they can only express knowledge whose form and content fits into the connections
of a neural network, and not the abstract concepts and laws that constitute an intuitive theory.
For that reason we favor the more explicitly symbolic approach described here.
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then filled in the most plausible way on the next inner search loop. For example,

the algorithm may posit a new rule never before considered, that objects of type f

interact with objects type g, without yet specifying what these concepts mean; they

are just represented with blank predicates f(X) and g(X). The inner loop would

then search for a reasonable assignment of objects to these classes – values for f(X)

and g(X), for each object X – grounding them out as magnets and magnetic objects,

for example. If this law proves useful in explaining the learner’s observations, it is

likely to persist in the MCMC dynamics, and with it, the novel concepts that began

as blank symbols f and g but have now effectively become what we call “magnets”

and “magnetic objects”.

In sum, we see many reasons to think that stochastic search in a language of

thought, with candidate theories generated by a probabilistic generative grammar

and scored against observations in a hierarchical Bayesian framework, provides a bet-

ter account of children’s theory acquisition than alternative computational paradigms

for modeling development such as connectionism. Yet there are also major gaps: sci-

entists and young children alike are smarter, more active, more deliberate and driven

explorers of both their theories and their experiences and experiments than are our

MCMC algorithms [151]. We now turn to a more technical treatment of our model

but we return to these gaps in the general discussion below.

4.3 Formal framework

This section gives a more formal treatment of theory learning, beginning with our

hierarchical Bayesian framework for describing ‘what’ is learned (Fig. 4-8), and then

moving to our proposed MCMC algorithm for explaining ‘how’ it could be learned

(Fig. 4-3).
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Formally, the hierarchical picture of knowledge shown in Fig. 4-8 provides the

backbone for a multilevel probabilistic generative model: conditional probability dis-

tributions that link knowledge at different levels of abstraction, supporting inference

at any level(s) conditioned on knowledge or observations at other levels. For in-

stance, given a domain theory T and a set of noisy, sparse observations D, a learner

can infer the most likely model M and use that knowledge to predict other facts not

yet directly observed [86, 87]. The theory T sets the hypothesis space and priors for

the model M , while the data D determine the model’s likelihood, and Bayes’ rule

combines these two factors into a model’s posterior probability score,

P (M |D,T ) ∝ P (D|M)P (M |T ). (4.1)

If the theory T is unknown, the learner considers a hypothesis space of candidate

theories generated by the higher-level universal theory (U) grammar. U defines a

prior distribution over the space of possible theories, P (T |U), and again the data D

determine a likelihood function, with Bayes’ rule assigning a posterior probability

score to each theory,

P (T |D,U) ∝ P (D|T )P (T |U). (4.2)

Bayes’ rule here captures the intuition of Occam’s razor, that the theory which best

explains a data set (has highest posterior probability P (T |D,U)) should balance

between fitting the data well (as measured by the likelihood P (D|T )), and being

simple or short to describe in our general language of thought (as measured by

the prior P (T |U)). Probabilistic inference can operate in parallel across this hier-

archical framework, propagating data-driven information upward and theory-based

constraints downward to make optimal probabilistic inferences at all levels simulta-
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neously.

Below we explain how each of these probability distributions is defined and com-

puted. The first step is to be more precise about how we represent theories, which

we have described so far using an informal mix of logic and natural langauge but

now formalize using first-order predicate logic.

A language for theories. Following [86] we choose to represent the laws in a

theory as Horn clauses, logical expressions of the form r ← (f ∧ g∧ ...∧ s∧ t), where

each term r, f, g, s, t, ... is a predicate expressing an attribute or relation on entities

in the domain, such as f(X) or s(X, Y ). Horn clauses express logical implications –

a set of conjunctive conditions under which r holds – but can also capture intuitive

causal relations [89] under the assumption that any propositions not generated by

the theory are assumed to be false. The use of implicational clauses as a language

for causal theories was explored extensively in [37].

While richer logical forms are possible, Horn clauses provide a convenient and

tractable substrate for exploring the ideas of stochastic search over a space of the-

ories. In our formulation, the Horn clauses contain two kinds of predicates: “core”

and “surface”. Core predicates are those that cannot be reduced further using the

theory’s laws. Surface predicates are derived from other predicates, either surface or

core, via the laws. Predicates may or may not be directly observable in the data.

The core predicates can be seen as compressing the full model into just the minimal

bits necessary to specify all true facts. As we explain in more detail below, a good

theory is one that compresses a domain well, that explains as much of the observed

data as possible using only the information specified in the core predicates. In our

magnetism example, the core could be expressed in terms of two predicates f(X)

and g(X). Based on an assignment of truth values to these core predicates, the

learner can use the theory’s laws such as interacts(X, Y )← f(X) ∧ g(Y ) to derive
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values for the observable surface predicate interacts(X, Y ). For n objects, there are

O(n2) interactions that can be observed (between all pairs of objects) but these can

be explained and predicted by specifying only O(n) core predicate values (for each

object, whether or not it is a magnet or is magnetic).

As another example of how a theory supports compression via its core predicatesG: Who is your

dad?

T: Grandfather

Shimon.

G: Oh! Is he my

dad too?

T: No.

G: Is Grandma

Chana also my

grandpa?

T: No, Grandma is

your grandma.

G: Ok.

T: And Grandma is

my mom.

G: Yeah...that

works.

(Conversation with

my three-year old)

and abstract laws, consider the domain of kinship as shown in Fig. 4-8. A child

learning this domain might capture it by core predicates such as parent, spouse, and

gender, and laws such as “Each child has two parents of opposite gender, and those

parents are each others’ spouse”; “A male parent is a father”; “Two individuals with

the same parent are siblings”; “A female sibling is a sister”; and so on. Systems in

this domain would correspond to individual families that the child knows about. A

system could then be compressed by specifying only the values of the core predicates,

for example which members of a family are spouses, who is the parent of whom, and

who is male or female. From this minimal set of facts and concepts all other true

facts about a particular family can be derived, predicting new relationships that were

not directly observed.

In constructing a theory, the learner introduces abstract predicates via new laws,

or new roles in existing laws, and thereby essentially creates new concepts. Notice

that the core predicates in our magnetism theory need be represented only in purely

abstract terms, f(X) and g(X), and initially they have only this bare abstract mean-

ing. They acquire their meaning as concepts picking out magnets or magnetic objects

respectively in virtue of the role they play in the theory’s laws and the explanations

they come to support for the observed data. This is the sense in which our frame-

work allows the introduction of genuinely new abstract concepts via their inferential

or conceptual roles.

Entities may be typed and predicates restricted based on type constraints. For
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example, in the taxonomy theory shown in Fig. 4-8, has a(X, Y ) requires that X

be a category and Y be a property, while is a(X, Y ) requires that X and Y both be

categories. Forcing candidate models and theories to respect these type constraints

provides the learner with another valuable and cognitively natural inductive bias.

Although our focus here is on the acquisition of intuitive theories in general, across

all domains of knowledge and all ages, much research has been concerned with the

form of young children’s theories in a few core domains and the development of that

knowledge over the first years of life. Our horn-clause language is too limited to

express the full richness of a two-year-old’s intuitive physics or intuitive psychology,

but it can represent simplified versions of them. For example, in Fig. 4-8 we show

a fragment of a simple “desire psychology” theory, one hypothesized early stage in

the development of intuitive psychology around two years of age [192]. This theory

aims to explain agents’ goal-directed actions, such as reaching for, moving towards or

looking for various object, in terms of basic but unobservable desires. In our language

desires(X,Y) (or simply d(X, Y ) in Fig. 4-8) is a core predicate relating an agent X

to an object Y . Desires are posited to explain observations of a surface predicate

goes to(X,Z, S): agent X goes to (or reaches for or looks in) location Z in situation

S. We also introduce background information in the form of an additional predicate

location(Y,Z,S) available to the child, specifying that object Y is in location Z in

situation S. Then by positing which agents desire which objects, and a law that says

effectively, “an agent will go to a certain location in a given situation if that location

contains an object that the agent desires”, a child can predict how agents will act in

various situations, and explain why they do so.

The theory prior P (T |U). We posit U knowledge in the form of a probabilistic
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Top level theory
(S1) S ⇒ (Law) ∧ S
(S2) S ⇒ (Tem) ∧ S
(S3) S ⇒ Stop

Random law generation
(Law) Law ⇒ (Fleft ← Fright ∧ Add)
(Add1) A ⇒ F ∧ Add
(Add2) A ⇒ Stop

Predicate generation
(Fleft1) Fleft ⇒ surface1()
...
(Fleft α) Fleft ⇒ surfaceα()
(Fright1) Fright ⇒ surface1()
...
(Fright α) Fright ⇒ surfaceα()
(Fright(α+ 1)) Fright ⇒ core1()
...
(Fright(α+ β)) Fright ⇒ coreβ()

Law templates
(Tem1) Tem ⇒ template1()
...
(Temγ) Tem ⇒ templateγ()

Figure 4-4: Production rules of the Probabilistic Horn Clause Grammar. S is the
start symbol and Law, Add, F and Tem are non-terminals. α, β, and γ are the
numbers of surface predicates, core predicates, and law templates, respectively.

context-free Horn clause grammar (PHCG) that generates the hypothesis space of

possible Horn-clause theories, and a prior P (T |U) over this space (Fig. 4-4). This

grammar and the Monte Carlo algorithms we use to sample or search over the theory

posterior P (T |D,U) are based heavily on [61], which introduced the approach for

learning single rule-based concepts rather than the larger law-based theory structures
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we consider here. We refer readers to [61] for many technical details. Given a set of

possible predicates in the domain, the PHCG draws laws from a random construction

process (Law) or from law templates (Tem; explained in detail below) until the Stop

symbol is reached, and then grounds out these laws as horn clauses. The prior

P (T |U) is the product of the probabilities of choices made at each point in this

derivation. Because all these probabilities are less than one, the prior favors simpler

theories with shorter derivations. The precise probabilities of different laws in the

grammar are treated as latent variables and integrated out, which favors re-use of

the same predicates and law components within a theory [61].

Law templates. We make the grammar more likely to generate useful laws

by equipping it with templates, or canonical forms of laws that capture structure

likely to be shared across many domains. While it is possible for the PHCG to

reach each of these law forms without the use of templates, their inclusion allows

the most useful laws to be invented more readily. They can also serve as the basis

for transfer learning across domains. For instance, instead of having to re-invent

transitivity anew in every domain with some specific transitive predicates, a learner

could recognize that the same transitivity template applies in several domains. It

may be costly to invent transitivity for the first time, but once found – and appreci-

ated! – its abstract form can be readily re-used. The specific law templates used are

described in Fig. 4-5. Each “F (·)” symbol stands for a non-terminal representing

a predicate of a certain -arity. This non-terminal is later instantiated by a specific

predicate. For example, the template F (X, Y )← F (X,Z) ∧ F (Z, Y ) might be in-

stantiated as is a(X, Y )← is a(X,Z) ∧ is a(Z, Y ) (a familiar transitive law) or as

has a(X, Y )← is a(X,Z) ∧ has a(Z, Y ) (the other key law of taxonomy, which is

like saying that “has a is transitive over is a”). This template could be instantiated

differently in other domains, for example in kinship as
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child(X, Y )← child(X,Z) ∧ spouse(Z, Y ), which states that the child-parent rela-

tionship is transitive over spouse.

F(X,Y) ← F(X,Z)∧F(Z,Y)

F(X,Y) ← F(Z,X)∧F(Z,Y)

F(X,Y) ← F(X,Z)∧F(Y,Z)

F(X,Y) ← F(Z,X)∧F(Y,Z)

F(X,Y) ← F(X,Y)∧F(X)

F(X,Y) ← F(Y,X)∧F(X)

F(X,Y) ← F(X,Y)∧F(Y)

F(X,Y) ← F(Y,X)∧F(Y)

F(X,Y) ← F(X)∧F(Y)

F(X,Y) ← F(Y,X)

F(X,Y) ← F(X,Y)

F(X) ← F(X)

F(X) ← F(X,Y)∧F(X)

F(X) ← F(Y,X)∧F(X)

F(X) ← F(X,Y)∧F(Y)

F(X) ← F(Y,X)∧F(Y)

Figure 4-5: Possible templates for new laws introduced by the grammar. The leftmost
F can be any surface predicate, the right F can be filled in by any surface or core
predicates, and X and Y follow the type constraints.

The theory likelihood P (D|T ). An abstract theory makes predictions about the

observed data in a domain only indirectly, via the models it generates. A theory

typically generates many possible models: even if a child has the correct theory and

abstract concepts of magnetism, she could categorize a specific set of metal bars in

many different ways, each of which would predict different interactions that could be

observed as data. Expanding the theory likelihood,

P (D|T ) =
∑
M

P (D|M)P (M |T ), (4.3)
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we see that theory T predicts data D well if it assigns high prior P (M |T ) to models

M that make the data probable under the observation process P (D|M).

The model prior P (M |T ) reflects the intuition that a theory T explains some data

well if it compresses well: if it requires few additional degrees of freedom beyond its

abstract concepts and laws – that is, few specific and contingent facts about the

system under observation, besides the theory’s general prescriptions – to make its

predictions. This intuition is captured by a prior that encourages the core predicates

to be as sparse as possible, thereby penalizing theories that can only fit well by

“overfitting” with many extra degrees of freedom. This sparseness assumption is

reasonable as a starting point for many domains, given that core predicates are

meant to explain and compress the data. Formally, we assume a conjugate beta

prior on all binary facts in M , modeled as Bernoulli random variables which we

integrate out analytically, as in [86].

Finally, the model likelihood P (D|M,T ) comes from assuming that we are ob-

serving randomly sampled true facts (sampled with replacement, so the same fact

could be observed on multiple occasions), which also encourages the model extension

to be as small as possible. This provides a form of implicit negative evidence [175],

useful as an inductive bias when only positive facts of a domain are observed.

Stochastic search in theory space: a grammar-based Monte Carlo algo-

rithm. Following [61], we use a grammar-based Metropolis-Hastings (MH) algorithm

to sample theories from the posterior distribution over theories conditioned on data,

P (T |D,U). This algorithm is applicable to any grammatically structured theory

space, such as the one generated by our PHCG; it is also a version of the Church

MH inference algorithm [58]. The MH algorithm is essentially a Markov chain on

the space of potential derivations from the grammar, where each step in the chain –

each proposed change to the current theory – corresponds to regenerating some sub-
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tree of the derivation tree from the PHCG. For example, if our theory of magnetism

includes the law interacts(X, Y )← f(X) ∧ g(Y ), the MH procedure might propose

to add or delete a predicate (e.g., interacts(X, Y )← f(X) ∧ g(Y ) ∧ h(Y ) or

interacts(X, Y )← f(X)), to change one predicate to an alternative of the same

form (e.g., interacts(X, Y )← f(X) ∧ h(Y )) or a different form if available (e.g.,

interacts(X, Y )← f(X) ∧ s(X, Y )); to resample the law from a template (e.g.,

interacts(X, Y )← t(X,Z) ∧ t(Z, Y )); or to add or delete a whole law.

These proposals are accepted with probability equal to the maximum of 1 and

the MH acceptance ratio,

P (T ′|D,U)

P (T |D,U)
· Q(T |T ′)
Q(T ′|T )

, (4.4)

where T is the current theory, T ′ is the new proposed theory, and Q(·|·) is the

transition probability from one theory to the other, derived from the PHCG [61]. To

aid convergence we raise these acceptance ratios to a power greater than 1, which

we increase very slightly after each MH step in a form of simulated annealing. Early

on in learning, a learner is thus more likely to try out a new theory that appears

worse than the current one, exploring candidate theories relatively freely. However,

with time the learner becomes more conservative – increasingly likely to reject new

theories unless they lead to an improved posterior probability.

While this MH algorithm could be viewed merely as a way to approximate the

calculations necessary for a hierarchical Bayesian analysis, we suggest that it could

also capture in a schematic form the dynamic processes of theory acquisition and

change in young children. Stochastic proposals to add a new law or change a pred-

icate within an existing law are consistent with some previous characterizations of

children’s theory learning dynamics [158]. These dynamics were previously proposed
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on purely descriptive grounds, but here they emerge as a consequence of a rational

learning algorithm. Although the dynamics of an MH search might appear too ran-

dom to an omniscient observer who knows the “true” target of learning, it would not

be fair to call the algorithm sub-optimal, because it is the only known general-purpose

approach for effectively searching a complex space of logical theories. Likewise, the

annealing process that leads learning to look child-like in a certain sense – starting

off with more variable, rapidly changing and adventurous theories, then becoming

more conservative and less variable over time – also makes very good engineering

sense. Annealing has proven to be useful in stochastic search problems across many

scientific domains [97] and is the only known method to ensure that a stochastic

search converges to the globally optimal solution. It does not seem implausible that

some cognitive analog of annealing could be at work in children’s learning.3

Approximating the theory score: an inner loop of MCMC Computing

the theory likelihood P (D|T ), necessary to compare alternative theories in Equation

(4.4), requires a summation over all possible models consistent with the current

theory (Equation (4.3)). Because this sum is typically very hard to evaluate exactly,

we approximate P (D|T ) with P (D|M∗, T )P (M∗|T ), where M∗ is an estimate of the

maximum a-posteriori (MAP) model inferred from the data: the most likely values of

the core predicates. The MAP estimate M* is obtained by running an inner sampling

procedure over the values of the core predicates. As in [86], we use a specialized form

of Metropolis-Hastings sampling known as Gibbs sampling. The Gibbs sampler goes

over each core predicate assignment in turn while keeping all other assignments

3It is worth noting that annealing could be implemented in a learning system without an explicit
temperature parameter or cooling schedule, merely based on experience accumulating over time.
Here for simplicity we have kept the learner’s dataset fixed, but if the learner is exposed to increasing
amounts of data over time and treats all data as independent samples from the model, this also acts
to lower the effective temperature by creating larger ratios between likelihoods (and hence posterior
probabilities) for a given pair of theories.
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fixed, and proposes changes to the currently considered assignment. As a concrete

example of how the Gibbs loop works, consider a learner who is proposing a theory

that contains the law interacts(X, Y )← f(X) ∧ g(Y ), i.e., objects for which core

predicate f is true interact with objects for which core predicate g is true. The

learner begins by randomly extending the core categories over the domain’s objects:

e.g., f might be posited to hold for objects 1, 4, and 7, while g holds for objects 2, 4,

6, and 8. (Note how either, both or none of the predicates may hold for any object,

a priori.) The learner then considers the extension of predicate f and proposes

removing object 1, scoring the new model (with all other assignments as before) on

the observed data and accepting the proposed change probabilistically depending

on the relative scores. The learner then considers objects 2, 3, and so on in turn,

considering for each object whether predicate f should apply, before moving on to

predicate g. (These object-predicate pairs are often best considered in random order

on each sweep through the domain.) This process continues until a convergence

criteria is reached. We anneal slightly on each Gibbs sweep to speed convergence

and lock in the best solution. The Gibbs sampler over models generated by a given

theory is thus an “inner loop” of sampling in our learning algorithm, operating within

each step of an “outer loop” sampling at a higher level of abstract knowledge, the

MH sampler over theories generated by U knowledge.

4.4 Case Studies

We now explore the performance of this stochastic approach to theory learning in

two case studies, using simulated data from the domains of taxonomy and magnetism

introduced above. We examine the learning dynamics in each domain and make more

explicit the possible parallels with human theory acquisition.
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4.4.1 Taxonomy

As we saw earlier, the domain of taxonomy illustrates how a compressive knowledge

representation is useful in capturing semantic data. How can such a powerful or-

ganizing principle itself be learned? [86] showed that a Bayesian ideal observer can

pick out the best theory of taxonomy given a small set of eight possible alternatives.

Here we show that the theory of taxonomy can be learned in a more constructive

way, via an MCMC search through our infinite grammar-generated hypothesis space.

The theory to be learned takes the following form:

Two core predicates: s(X, Y ) and t(X, Y )

Two observable predicates: is a(X, Y ) and has a(X, Y )

Law 1: is a(X, Y ) ← s(X, Y )

Law 2: has a(X, Y ) ← t(X, Y )

Law 3: is a(X, Y ) ← is a(X,Z) ∧ is a(Z, Y )

Law 4: has a(X, Y ) ← is a(X,Z) ∧ has a(Z, Y )

These laws by themselves do not yet capture the complete knowledge represen-

tation we are after; we also need to instantiate the core predicates in a particular

model. These laws allow many possible models for any given data sets. One of these

models is the compressed tree representation (shown in Fig. 4-8 in the Model section

of the taxonomy domain), which specifies only the minimal facts needed to derive

the observed data from Laws 1-4. A different model could link explicitly all the

is a(X,Y) connections, for example drawing the links between salmon and animal,
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shark and animal and so on. Another model could link explicitly all the has a(X,Y)

connections. However, these latter two models would be much less sparse than the

compressed tree representation, and thus would be disfavored relative to the com-

pressed tree shown in Fig. 4-8, given how we have defined the model prior P (M |T ).

In sum, in this framework, the organization of categories and properties into a tree-

structured inheritance hierarchy comes about from a combination of positing the

appropriate abstract laws and core predicates together with a sparsity preference on

the assignments of the core predicates’ values.

Note also that the core predicates s(X, Y ) and t(X, Y ) acquire their meaning

in part by their inferred extensions, and in part by how they are related to the

observed surface predicates. The surface predicates are assumed to be verbal labels

which the learner observes and needs to account for. The link between these verbal

labels and the core relations are what given by Laws 1 and 2. While these links

could in general also be learned, we follow [86] in taking Laws 1 and 2 as given for

this particular domain and asking whether a learner can theoretically discover Laws

3 and 4 – but now at the algorithmic level. We test learning for the same simple

model of the taxonomy domain studied by Katz et al., using seven categories and

seven properties in a balanced tree structure. We presented all true facts from this

model as observations to the learner, including both property statements (e.g., “An

eagle has claws”) and category membership statements (e.g., “An eagle is a bird”).

The data for this section and the following case study can be found in the appendix.

We ran 60 simulations, each comprising 1300 iterations of the outer MH loop

(i.e., moves in the space of theories). Four representative runs are shown in Fig. 4-6,

as well as the average across all the runs. Out of 60 simulations, 52 found the correct

theory within the given number of iterations, and 8 discovered a partial theory which

included only Law 3 or Law 4.
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Figure 4-6: Representative runs of theory learning in Taxonomy. (a) Dashed lines
show different runs. Solid line is the average across all runs. (b) Highlighting a
particular run, showing the acquisition of law 4, followed by the acquisition of law 3
and thus achieving the final correct theory.

Several points are worth noting beyond these quantitative results. First, it is

striking that abstract structure can be learned effectively from very little data. Us-

ing simple local search, our learning algorithm is able to navigate an infinite space

of potential theories and discover the true laws underlying the domain, even with

relatively few observations in the relations between seven categories and seven prop-

erties. This is a version of the “blessing of abstraction” described in [63] and [178],

but one that is realized at the algorithmic level and not just the computational level

of ideal learning.

Second, individual learning trajectories proceed in a characteristic pattern of

stochastic leaps. Discovering the right laws gives the learner strong explanatory

power. However, surrounding each “good” theory in the discrete hypothesis space are

many syntactically similar but nonsensical or much less useless formulations. Moving

from a good theory to a better one thus depends on proposing just the right changes

to the current hypothesis. Since these changes are proposed randomly, the learner
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often stays with a particular theory for many iterations, rejecting many proposed

alternatives which score worse or not significantly better than the current theory,

until a new theory is proposed that is so much better it is almost surely accepted.

This leads to the observed pattern of plateaus in the theory score, punctuated by

sudden jumps upward and occasional jumps downward in probability. While we do

not want to suggest that people learn theories only by making random changes to

their mental structures, the probabilistic nature of proposals in a stochastic search

algorithm could in part explain why individual human learning curves rarely proceed

along a smooth path and can show broad variation across individuals given the same

data.

Third, while individual learning trajectories may be discontinuous, on average

learning appears smooth. Aggregating performance over all runs shows a smooth

improvement of the theory’s score that belies the underlying discrete nature of learn-

ing at an individual level. This emphasizes the possible danger of studying theory

learning and theory change only in the average behavior of groups of subjects, and

the theoretical value of microgenetic methods [159] for constraining algorithmic-level

models of children’s’ learning.

4.4.2 Magnetism

We now turn to the domain of magnetism, where the trajectory of theory learn-

ing reveals not only successful acquisition, but interesting intermediate stages and

transitions corresponding to classic phenomena of conceptual change in childhood

and early science [26]. The simplified theory of magnetism to be learned takes the

following form:
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Two core predicates: f(X) and g(X)

One observable predicate: interacts(X, Y )

Law 1: interacts(X, Y ) ← f(X) ∧ f(Y )

Law 2: interacts(X, Y ) ← f(X) ∧ g(Y )

Law 3: interacts(X, Y ) ← interacts(Y,X)

The particular model used for learning contained 10 objects: 3 magnets, 5 mag-

netic objects and 2 non-magnetic objects. The learner was given all true facts in

this model, observing interactions between each magnet and every other object that

was either a magnet or a magnetic object, but no other interactions. Unlike in the

previous taxonomy example, the learner was given none of the laws or core predicate

structure to begin with; the entire theory had to be constructed by the search algo-

rithm. Assuming the correct laws (as shown above) can be found, the model prior

P (M |T ) favoring sparsity suggests the optimal values for the core predicates should

assign one core predicate (f) to all and only the magnets, and another predicate

(g) to all and only the non-magnet magnetic objects. This leads to the theory and

model depicted jointly in Fig. 4-8.

We ran 70 simulations, each comprising 1600 iterations of the outer MH loop

sampling over candidate theories. In many respects, results in this domain were

qualitatively similar to what we described above for taxonomy. Out of 70 simulated

learning runs, 50 found the correct theory or a minor logical variant of it; the rest

discovered a partial theory. The correct final theories account for the full observed

data and only the observed data, using three laws. While all the full theories learned

included Laws 1 and 2, only some of them included the exact form of Law 3, express-
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Figure 4-7: Representative runs of theory learning in Magnetism. (a) Dashed lines
show different runs. Solid line is the average across all runs. (b) Highlighting a
particular run, showing the acquisition of law 1 and the confounding of magnets
and magnetic (but non-magnet) objects, the discarding of an unnecessary law which
improves the theory prior, and the acquisition of the final correct theory.

ing the symmetry of interaction.4 The dynamics of representative runs are displayed

in Fig. 4-7, as well as the average over all the runs. As in the domain of taxonomy,

individual learners experienced radical jumps in their theories, while aggregating

across runs learning appears to be much smoother.

The most interesting aspects of learning here were found in the transitions be-

tween distinct stages of learning, when novel core predicates are introduced and

existing core predicates shift their meaning in response. Key transitions in children’s

cognitive development may be marked by restructuring of concepts, as when one core

concept differentiates into two [23]. Our learning algorithm often shows this same

dynamic in the magnetism task. There is no single order of concept acquisition that

4However, the variants discovered were functionally equivalent within this domain to symme-
try. Such variants include redundant re-statements of symmetry, such as interacts(X,Y) ← inter-
acts(Y,Z) ∧ equals(Z,X). Other forms happen to capture the same facts as symmetry within this
particular domain, such as interacts(X,Y) ← interacts(Y,Z) ∧ g(Z). These variants appear more
complex than the basic symmetry law, and they do score slightly worse than theories that recover
the original formulation. However, since they were generated by templates in this case, this extra
complexity does not hurt them significantly.
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the algorithm follows in all or most runs, but the most common trajectory (shown

in Fig. 4-7b) involves learning Law 1 first, followed later by the acquisition of Laws

2 and 3. As mentioned earlier, for a learner who knows only Law 1, the optimal

setting of the core predicates is to lump together magnets and magnetic objects in

one core predicate, essentially not differentiating between them. Only when Laws 2

and 3 are learned does the learner also acquire a second core predicate that carves

off the magnetic non-magnets from the magnets. On a smaller number of runs, a

different order of acquisition is observed: first Laws 2 and 3 are learned, and then

Law 1 is added. This sequence also involves a conceptual restructuring, albeit a less

dramatic one. A learner who possesses only Laws 2 and 3 will optimally assign one

predicate to all and only the magnets, and another core predicate to both magnets

and magnetic non-magnets, again lumping these two classes together. Only once

Law 1 is added to Laws 2 and 3 will the learner completely differentiate the two core

predicates with non-overlapping extensions corresponding to magnets and magnetic

non-magnets.

In both of these cases, the time course of learning appears as a progression from

simpler theories (with fewer core predicates and/or laws) that explain the data less

faithfully or less efficiently, to more complex theories (with more core predicates

and/or laws) that explain the data more faithfully or more efficiently. A learner with

the simpler theory consisting of only Law 1 (without Laws 2 and 3) will overgeneral-

ize, predicting the existence of interactions that do not actually occur: interactions

between pairs of non-magnet magnetic objects (which would be treated the same as

interactions between two magnets, or a magnet and a magnetic object). A learner

with the simpler theory consisting of Laws 2 and 3 (but not Law 1) will make the

right predictions about interactions to be observed but would represent the world

less efficiently, less sparsely, than they could: they would need to assign values for
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both core predicates to represent each magnet, rather than just using a single core

predicate to represent magnets and only magnets. Yet while being less accurate or

less efficient, these earlier, simpler theories are still reasonable first approximations

to the optimal theory of this domain. They are also plausible intermediate points for

the learner on the way to the optimal theory, who can get there merely by adding

one or two new laws and differentiating the extension of a core predicate into two

non-overlapping subsets of objects, magnets and magnetic non-magnets, which had

previously been merged together in that predicate’s extension.

4.5 Two Sources of Learning Dynamics

The story of development is in essence one of time and data. In order to construct“Had we but world

enough, and time”

– Andrew Marvell,

To His Coy

Mistress

adult-level intuitive theories, children require both sufficient time to ponder and ex-

posure to sufficient evidence. For a child on the verge of grasping a new theory, either

additional data or additional time to think can make the difference [26]. Measured

as a function of either time or amount of data experienced, the dynamics of learning

typically follows an arc from simpler theories that only coarsely predict or encode

experience to more complex theories that more faithfully predict and encode it. The

above case studies of theory learning in the domains of taxonomy and magnetism

show this dynamic as a function of time elapsed in the search process, for a fixed

data set. Previous Bayesian models of theory learning [91] have emphasized the

complementary perspective: how increasing amounts of data naturally drive an ideal

learner to more complex but more predictive theories, independent of the dynamics

of search or inference.

These two sources of learning dynamics are most naturally understood at differ-

ent levels of analysis. Data-driven learning dynamics seems best explained at the
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computational level, where the ideal learner shifts probability mass between candi-

date theories as a function of the data observed. In contrast, time-driven dynamics

(independent of the amount of data observed) seems best approached at the algo-

rithmic level, with models that emphasize how the learner’s process of searching

over a hypothesis space unfolds over time independent of the pace with which data

accumulates.

Our modeling approach is well suited to studying both data-driven and time-

driven dynamics and their interactions, because of its focus on the interface between

the computational and algorithmic levels of analysis. In the rest of this section we

return to the domain of simplified magnetism and explore the independent effects

and interactions of these two different drivers of theory change in our model. How

does varying time and data affect our ideal learner? We provide the learner with

several different data sets, and examine how the learning dynamics unfold over time

for each one of these sets. In each data set we provide the learner with different

observations by parametrically varying the number of magnetic objects over five

cases, which can be ordered in the following way: Case 1 had 3 magnets, 1 magnetic

object and 6 non-magnetic objects. Each case then adds one magnetic object while

removing one non-magnetic object, so that case 2 has 3 magnets, 2 magnetic objects

and 5 non-magnetic objects, up to case 5 which has 3 magnets, 5 magnetic objects

and 2 non-magnetic objects (the same as the previous section). We also considered

a special case, case X, in which there is only 1 magnet, 7 magnetic objects and 2

non-magnetic object. In all cases the theory governing the domain is exactly the

same as that described in the magnetism case study. Given these different cases we

find that at the end of the simulation the learner almost always settled on one of

three theories. We therefore focus on these three theories, the formal laws of which

are given in Fig. 4-8a. Informally, these theories correspond to:
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Theory A: “There is one class of interacting objects in the world, and objects in

this class interact with other objects in this class.”

Theory B: “There are two classes of interacting objects in the world, and ob-

jects from one class interact with objects in the other class. These interactions are

symmetric.”

Theory C: “There are two classes of interacting objects in the world, and objects

from one class interact with objects in the other class. Also, objects in one of

the classes interact with other objects in the same class. These interactions are

symmetric.”

It is important to emphasize that theories A, B and C were not given to the learner

as some sort of limited hypothesis space. Rather, the number of possible theories the

learner could consider in each case is potentially infinite, but practically it settles

on one of these three or their logical equivalents. Many other theories besides A,

B and C were considered by the learner, but they do not figure significantly into

the trajectory of learning. These theories are much less good (i.e., unnecessarily

complex or poorly fitting) relative to neighboring knowledge states, so they tend to

be proposed and accepted only in the early, more random stages of learning, and

are quickly discarded. We could not find a way to group these other theories into

cohesive or sensibly interpreted classes, and since they are only transient states of

the learner, we removed them for purposes of analyzing learning curves and studied

only the remaining proportions, renormalized.

In order to see how the dynamics of learning depend on data, consider specifically

cases in which there are few magnetic objects that are not magnets, perhaps 1 or 2

(as in cases 1 and 2). In this case a partial theory such as theory A might suffice.

According to this theory there is only one type of interacting object, and one law. If

there are two magnetic non-magnets in the domain, the partial theory will classify
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them as ‘interacting’ objects based on their behavior with the magnets, conflating

them with the magnets. However, it will incorrectly predict the two magnetic non-

magnets should interact with each other. Their failure to interact will be treated as

an outlier by the learner who has theory A. The full theory C can correctly predict

this non-interaction, but it does so by positing more laws and types of objects, which

has a lower prior probability. As the number of magnetic non-magnets increases, the

number of ’outliers’ in the data increase as well (see Fig. 4-8b). Theory A now

predicts more and more incorrect interactions, and in a Kuhnian fashion there is a

point at which these failures can no longer be ignored, and a qualitative shift to a

new theory is preferred. In a completely different scenario, such as the extreme case

of only 1 magnet (case X), we might expect the learner to not come up with magnet

interactions laws, and settle instead on theory B.

For each one of the outlined cases we ran 70 simulations for 1600 iterations.

Fig. 4-8c shows the effect of data and time on the learning process, by displaying

the relative proportion of the outlined theories at the end of the iteration for all

simulations. Note the transition from case 1 to case 5: With a small number of non-

magnet magnetic objects, the most frequently represented theory is theory A, which

puts all magnetic objects (magnet or not) into a single class and treats the lack of

interactions between two magnetic non-magnets as essentially noise. As the number

of magnetic non-magnets increases, the lack of interactions between the different

non-magnets can no longer be ignored and the full theory becomes more represented.

Case X presents a special scenario in which there is only 1 magnet, and as expected

theory B is the most represented there. The source of the difference between the

proportion of theories learned in these different cases is the data the learner was

exposed to. Within each case, the learner undergoes a process of learning similar to

that described in the case studies – adopting and discarding theories in a process or
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time-driven manner.

To summarize, theory acquisition can be both data-driven and process-driven.

Our simulations suggest that, at least in this simplified domain, both sufficient data

and sufficient time to think are required. Only when the observed data provide a

strong enough signal – as measured here by potential outliers under a simpler theory

– is there sufficient inductive pressure for a Bayesian learner guided by simplicity

priors to posit a more complex theory. Yet even with all the data in the world,

a practical learning algorithm still requires sufficient time to think, time to search

through a challenging combinatorial space of candidate laws and novel concepts

and construct a sequence of progressively higher scoring theories that will reliably

converge on the highest scoring theory for the domain.5 The fact that both sufficient

data and sufficient time are needed for proper theory learning fits with the potentially

frustrating experience of many teachers and parents: having laid out for a child all

the data, all the input, that they need to solve a problem, grasp some explanation,

or make a discovery, the child still doesn’t seem to get it, or takes surprisingly long

to get it. Knowing that any realistic learner needs both data enough, and time, may

at least provide some relief from that frustration and the patience to watch and wait

as learning does its work.

4.6 Evidence from experiments with children

While our work here has been primarily motivated by theoretical concerns, we also

want to consider the empirical evidence that children’s learning corresponds in some

way to the computational picture we have developed. Our most basic result is that a

5It should however be noted that in some cases, the time-component allows the learner to ‘weed
out’ and abandon overly complex theories.
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simple, cognitively plausible, stochastic search algorithm, guided by an appropriate

grammar and language for theories, is capable of solving the rather sophisticated

joint inference problem of learning both the concepts and the laws of a new theory

– what we referred to as the “hard problem” or the “chicken-and-egg” problem

of theory learning. In the last few years, several lines of experimental work have

shown that children and adults can indeed solve this joint inference problem in the

course of acquiring new theories. [92] showed that adults were able to learn new

causal relations, such as objects of type A light up type B, and to use these relations

to categorize objects, for example object 3 is of type A. In [107] adults performed

a task asking about specific causal structures leading to evidence (which objects

are ‘blickets‘ that cause a ‘blicket-meter‘ to activate), which required inferring the

abstract functional form of the causal relations (do blickets activate the meter via a

noisy-OR function, a deterministic disjunctive function or a conjunctive function).

A similar experiment [108] demonstrated that children are also able to acquire such

abstract knowledge about the functional causal form while considering the specific

identity of objects.

While in these studies children were explicitly told that only one type of concept

is involved, Schulz and colleagues [154] showed that young children can solve an even

more challenging task: Given sparse evidence in the form of different blocks touching

and making different noises, the children correctly posited the existence of three

different causal kinds underlying the observed relations. In this case the children

had to both infer the abstract relations governing the behavior, and posit how many

concepts underly these relations. These papers are qualitatively consistent with the

predictions of our approach . In [17] we showed a more quantitative correspondence

between our model predictions and children’s categorization judgments. In that

study children were shown interactions in a domain of simplified magnetism, where
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several unlabeled blocks interacted with blue and yellow blocks, either attracting or

repelling from them. We also showed that the Monte Carlo search algorithm given

here is capable of finding just the theories that children do, or theories that are

behaviorally indistinguishable from them, and revising them appropriately.

Could models from an alternative paradigm such as connectionism also explain

these results? Connectionist architectures could potentially solve aspects of the tasks

described in [107], for example. There are certainly networks capable of distinguish-

ing between different functional forms like those in [107], which may be seen as

learning governing laws in a theory. Connectionist networks can also form new con-

cepts - in the sense of clusters of data that behave similarly - via competitive learning.

However, it has yet to be shown that a connectionist network can learn or represent

the kinds of abstract knowledge that our approach does, and that children grasp in

the other experiments cited above: solving the joint inference problem of discovering

a system of new concepts and laws that together explain a set of previously unex-

pected interactions or relations. This problem poses an intriguing open challenge for

connectionist modelers in cognitive development, one that could stimulate significant

new research.

Going forward, we would like more fine-grained tests of whether and how the

Monte Carlo search learning mechanism we have posited corresponds to the mecha-

nisms by which children explore their space of theories. This will be challenging, as

most of the steps of learning are not directly observable. We are currently working on

studies together with Bonawitz and colleagues to test some general predictions of our

model, such as the trade-off between data and time described in the section above.

In these experiments we recreate the domain of simplified magnetism described in

the case studies section, with three types of objects that interact according to several

laws. The children will be given different amounts of evidence, and crucially different
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segments of time, after which they will be asked to sort the objects they see into

categories and describe why they do so. The children will not be told in advance how

many object types exist, and we anticipate the number of types posited by the chil-

dren will depend on their current domain theory. We anticipate the same amount of

evidence but varying lengths of time will lead children to transition from one theory

to the next, which will be evidenced in their sorting behavior. This behavior will be

matched with running the stochastic search algorithm for varying amounts of time,

as described in the previous section, though we recognize these are still only indirect

tests of the model’s predictions.

More precision could come from microgenetic methods [159], which study devel-

opmental change by giving children the same task several times and inspecting the

strategies used to solve the task at many intervals. Microgenetic studies find that

often, while the task itself remains constant, the strategies used to solve it undergo

change. This data could be interpreted as a search process unfolding over time. A

fundamental question for the microgenetic method remains why and how change oc-

curs. Our algorithmic approach offers an explanation of how, and can potentially

address the why. Together with Bonawitz and colleagues we are developing micro

genetic methods to test whether children’s learning can be explained in terms of

Monte Carlo search.

One key challenge in designing a microgenetic study is defining an externally

measurable sign of the internal cognitive mechanism of hypothesis testing and dis-

covery. Similar to how microgenetic studies keep a task fixed, we intend to observe

how children play and experiment with a given set of objects, without introduce new

objects or any new data in the form of new interactions that haven’t been observed

before. As in classic microgenetic studies, we intend to ask the children questions

and encourage them to talk out loud about their hypotheses in, order to probe the
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state of their search at more abstract levels of the theory. We can score the theories

they uncover using computational tools, and observe whether the pattern of theories

abandoned, adopted and uncovered fits with Monte Carlo search.

4.7 Discussion and Conclusion

Not all those who wander are lost

– J.R.R Tolkien, All That is Gold Does Not Glitter

We have presented an algorithmic model of theory learning in a hierarchical

Bayesian framework and explored its dynamics in several case studies. We find en-

couraging the successful course of acquisition for several example theories, and the

qualitative parallels with phenomena of human theory acquisition. These results

suggest that previous “ideal learning” analyses of Bayesian theory acquisition can be

approximately realized by a simple stochastic search algorithm and thus are likely

well within the cognitive grasp of child learners. It is also encouraging to think that

state-of-the-art Monte Carlo methods used in Bayesian statistics and artificial in-

telligence to approximate ideal solutions to inductive inference problems might also

illuminate the way that children learn. At this intersection point between the compu-

tational level and the algorithmic level of analysis, we showed that theory change is

expected to be both data-driven and process-driven. This is an important theoretical

distinction, but the psychological reality of these two sources of learning dynamics

and their interaction needs to be further studied in experiments with children and

adults.

While the main contributions of this chapter are in addressing the algorithmics

of theory acquisition, the ‘how’, the introduction of law templates provides some
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insight regarding ‘what’ the structure of children’s knowledge might be, and the

coupling between how we answer ‘what?’ and ‘how?’ questions of learning. On

an algorithmic level, we found such templates to be crucial in allowing learning to

converge on a reasonable timescale. On a computational level, these templates can be

seen as generalizing useful abstract knowledge across domains, and providing high-

level constraints that apply across all domain theories. The formal framework section

did not directly treat where such templates come from, but it is possible to imagine

that some of them are built in as overarching constraints on knowledge. More likely,

though, they are themselves learned during the algorithmic acquisition process. An

algorithmic grammar-based model can learn templates by abstracting successful rules

from their particular domain instantiation. That is, if the model (or child) discovers

a particularly useful rule involving a specific predicate such as “if is a(X,Y) and

is a(Y,Z), then is a(X,Z)”, then the specific predicate might be abstracted away

to form the transitive template “if F(X,Y) and F(Y,Z), then F(Y,Z)”. Learning this

transitive template then allows its reuse in subsequent theory, and represents a highly

abstract level of knowledge.

There are many ways in which our modeling work here can and should be extended

in future studies. The algorithm we have explored is only one particular instance

of a more general proposal for how stochastic search operating over a hierarchically

structured hypothesis space can account for theory acquisition. The specific theo-

ries considered here were only highly simplified versions of the knowledge children

have about real-world domains. Part of the reason that actual concepts and theories

are richer and more complex is due to the fact that children have a much richer

underlying language for representations. Horn clauses are expressive and suitable

for capturing some knowledge structures, and in particular certain kinds of causal

relations, but they are not enough. A potentially more suitable theory space would
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be built on a functional language, in which the laws are more similar to mathemat-

ical equations. Such a space would be harder to search through, but it would be

much more expressive. A functional language of this sort would allow us to explore

rich theories described in children, such as basic notions about objects and their

interactions [169], and the intuitive physics of object behavior [5]. Despite the need

for a more expressive language, we expect the same basic phenomena found in the

model domains considered here to be replicated in more complex models. Moving

forward, a broader range of algorithmic approaches, stochastic as well as determinis-

tic, need to be evaluated as both as behavioral models and as effective computational

approximations to the theory search problem for larger domains.

Relative to previous Bayesian models of cognitive development that focused on

only the computational level of analysis, this chapter has emphasized algorithmic-

level implementations of a hierarchical Bayesian computational theory, and the in-

terplay between the computational and algorithmic levels. We have not discussed at “[T]here seems to

be little predictive

extrapolation from

the ‘component’

level to the

‘computational’

level. Extrapolation

in the other

direction is,

however, somewhat

easier”

– Marr and Poggio

all the level of neural implementation, but recent proposals by a number of authors

argue that analogous stochastic-sampling ideas could plausibly be used to carry out

Bayesian learning in the brain [40]. More generally, a “top-down” path to bridging

levels of explanation in the study of mind and brain, starting with higher, more

functional levels and moving down to lower, more mechanistic levels, appears most

natural for Bayesian or other “reverse-engineering” approaches to cognitive model-

ing [72]. Other paradigms for cognitive modeling adopt different ways to navigate

the same hierarchy. Connectionist approaches, for instance, start from hypothesized

constraints on neural representations (e.g., distributed codes) and learning mecha-

nisms (e.g., error-driven learning) and move up from there, to see what higher-level

phenomena emerge [115]. While we agree that actual biological mechanisms will

ultimately be a central feature of any account of children’s cognitive development,
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we are skeptical that this is the best place to start [72]. The details of how the brain

might represent or learn knowledge such as the abstract theories we consider here

remain largely unknown, making a bottom-up emergent alternative to our approach

hard to contemplate. In contrast, while our top-down approach has yet to make

contact with neural phenomena, it has yielded real insights spanning levels. Moving

from computational-level accounts to algorithms that explicitly (if approximately)

implement the computational theory let us see plainly how the basic representations

of children’s theories could be acquired, and suggest explanations for otherwise puz-

zling features of the dynamics of learning in young children, as the consequences of

efficient and effective algorithms for approximating the rational computational-level

ideal of Bayesian learning. We hope that as neuroscience learns more about the

neural substrates of symbolic representations and mechanisms of exploratory search,

our top-down approach can be meaningfully extended from the algorithmic level to

the level of implementation in the brain’s hardware.

Going back to the puzzle of the “chicken and egg” problem posed at the begin-

ning of the chapter, what do the dynamics explored here tell us about the coupled

challenges of learning the laws of a theory and the invention of truly novel concepts,

and the opposing views represented by Fodor and Carey? There is a sense in which,

at the computational level, the learner already must begin the learning process with

all the laws and concepts needed to represent a theory already accessible. Otherwise

the necessary hypothesis spaces and probability distributions for Bayesian learning

could not be defined. In this sense, Fodor’s skepticism on the prospects for learning

or constructing truly novel concepts is justified. Learning cannot really involve the

discovery of anything “new”, but merely the changing of one’s degree of belief in

a theory, transporting probability mass from one part of the hypothesis space to

another. However, on the algorithmic level explored in this chapter, the level of
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active processing for any real-world learner, there is in fact genuine discovery of new

concepts and laws. Our learning algorithm can begin with no explicitly represented

knowledge in a given domain – no laws, no abstract concepts with any non-trivial

extensions in the world – and acquire reasonable theories comprised of novel laws

and concepts that are meaningfully grounded and predictively useful in that domain.

Our specific algorithm suggests the following account of how new concepts derive

their meanings. Initially, the concepts themselves are only blank predicates. The

theory prior induces a non-arbitrary structure on the space of possible laws relating

these predicates, and in that sense can be said to contain a space of proto-meanings.

The data are then fused with this structure in the prior to create a structured poste-

rior: the concepts are naturally extended over the observed objects in those regions

where the posterior has a high probability, and those are the areas in theory space

that the learner will converge towards. This algorithmic process is, we suggest, an

instance (albeit a very simple one) of Carey’s “bootstrapping” account [25, 26] of

conceptual change, and a concrete computational implementation of concept learning

under an inferential role semantics.

Under Carey’s account of the origins of new concepts, children first use symbols as

placeholders for new concepts and learn the relations between them that will support

later inferential roles. Richer meaning is then filled in on top of these placeholders and

relations, using a “modeling process” involving a range of inductive inferences. The

outer loop of our algorithm explains the first stage: why some symbolic structures

are used rather than others and how their relations are created. The second stage

of Carey’s account parallels the inner loop of our algorithm, which attempts to find

the likeliest and sparsest assignment of the core predicates, once their interactions

have been fixed by the proposed theory. During our algorithmic learning process,

new concepts may at times have only a vague meaning, especially when they are
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first proposed. Concepts that are fragmented can be unified, and concepts that are

lumped together may be usefully dissociated, as learners move around theory space in

ways similar to how new concepts are manipulated in both children’s and scientists’

theory change [26].

Returning to the overarching idea of the child as scientist, it is interesting to

recall how from its inception, the study of the cognitive development of children was

heavily influenced by the philosophy of science. Many researchers have found the

metaphor of children as Lilliputian scientists useful and enlightening, seeing chil-

dren as testing hypotheses and building structured causal models of the world, and

this idea has found an exact formulation in an ideal Bayesian framework. However,

neither children nor scientists are ideal, and discovering the practical learning algo-

rithms of children may also lead us back to a better understanding of the process

and dynamics of science itself as a search process.

Despite our optimism, it is important to end by stressing that our models at best

only begin to capture some aspects of how children acquire their theories of the world.

We agree very much with the view of [151] that the hardest aspects of the problem are

as yet unaddressed by any computational account, that there are key senses in which

children’s learning is a kind of exploration much more intelligent and sophisticated

than even a smart randomized search such as our grammar-based MCMC. How

could our learning algorithms account for children’s sense of curiosity, knowing when

and where to look for new evidence? How do children come up with the proper

interventions to unconfound concepts or properties? How can a learning algorithm

know when it is on the right track, so to speak, or distinguish good bad ideas from

bad bad ideas, which children seem able to do? How do pedagogy and learning from

others interact with internal search dynamics - are the ideas being taught simply

accepted, or do they form the seed of a new search? How can algorithmic models go
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beyond the given evidence and actively explore, in the way children search for new

data when appropriate? There is still much toil left – much rewarding toil, we hope

– until we can say reasonably that we have found a model of children’s learning, and

believe it.
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Chapter 5

Commonsense Reasoning About

Physics and Psychology

“Common sense is the more

consolidated [type of thought],

because it got its innings first, and

made all language into its ally.” —

William James, Pragmatism

If we could put a infant’s mind directly under a lens, as one peers into a dish

under a microscope, what would we see?

Perhaps one big interlocking mechanism. Or maybe a thousand tiny special-

purpose cognitive organelles [170]? Probably neither, according to recent decades of

research. Instead, we would see a small number of distinct regions, each with its own

parcel of concepts and principles [168]. On one side of the dish, core physics. Over

there a jumble of a different hue, possibly core psychology.
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Figure 5-1: Microscope view of core domains in a mind-dish.

It seems an odd picture, beyond the oddity of imagining concepts as flattened

globules drifting in space1. The picture is odd because it conjures up two immediate

puzzles:

First, what is the inner machinery and mechanism of these globules?

Second, how do these different globules relate and communicate with one an-

other?

To better explain the puzzle of mechanism, take for instance the glob labeled

‘contingency’. It is not in doubt that infants expect agents to act contingently, and

that this expectation forms part of the core understanding of agents [167]. But

knowledge in such a form seems incomplete. As mentioned in the introduction, it is

1Researchers do that all the time.
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more a Keplerian principle than a Newtonian explanation. How can we implement

such a principle in an artificial system? Should we put in a ‘contingency’ detector that

raises a ‘surprise’ flag when a violation is noticed? How would we define contingency,

or agency? This question of underlying cognitive machinery applies to many of the

other ‘core knowledge’ propositions, like ‘objects should not wink out of existence’

or ‘objects follow smooth paths’. Chapters 2 and 3 partially addressed this puzzle

by providing inner mechanisms in the form of formal models. This is not to say

the models fully answer this question, but they provide the shape of a satisfactory

answer.

What about the second question, how do these domains communicate with one

another? One answer is that they don’t. At least, not until we develop language or

a language-like ability2. But if that’s the case, how do we know which is the right

core system to use when trying to make sense of a scene? And what if common-sense

interpretations have to take into account several core domains? In particular, it seems

that the core systems of physics and psychology have to interact frequently in order

to reason in a common-sense way about scenes. Are there perhaps ‘core-connections’

between the core systems?

In this chapter I focus on the second puzzle. To better explain the challenges

involved, I examine a “mini-world” that requires people to simultaneously use two

core domains – physics and psychology – in order to make sense of it. I will set up

some intuition for the problem of interest through the classic Heider and Simmel

psychophysics study [79] (Section 5.1). I then propose a minimal version of Heider

and Simmel’s world that captures its important elements. I show this world, while

shrunk and bare, can give impressions of animacy and non-animacy, tug and drag,

2That is one common interpretation of why young children, rats and language-hindered adults
are unable to solve a spatial navigation task that requires input from non-geometric cues [188, 157]
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chase and flee, push and shove, fight and run (Section 5.2). I review ‘bottom-up’

and ‘cue-based’ approaches and how they might tackle joint animacy-and-physics

reasoning (Section 5.3).

I then present a generative-model, where the perception of animacy is a hypothesis-

comparison process (Section 5.4). I briefly remind the reader of the formal models

of intuitive physics and psychology, pointing out their similar structure and similar

‘end product’: entities moving over time. I propose a generative model that builds

on the minimally necessary parts from both physics and psychology. The model gen-

erates observations in, and reasons about, a perceptually bare but conceptually rich

domain. I end by considering some options for formalizing an ‘Ur-theory’ of intuitive

physics and psychology (Section 5.5). The main contributions of this chapter to the

thesis are: the generative model for a minimal domain that requires reasoning about

both objects and agents, the minimal domain useful in itself for testing different ap-

proaches to common-sense reasoning, and the suggested formalizations for combining

objects and agents.

5.1 Building Intuitions With Moving Circles

To get a better sense of the problem, consider the classic short movie used by Heider

and Simmel in 1944 to examine social attributions [79]. The scenario depicts four

shapes (see Fig. 5-2): a small circle, a small triangle, a large triangle and a rectan-

gular hollow box. For a little over a minute, the circle and triangles move, rotate“Lovers in the

two-dimensional

world, no doubt;

little triangle

number-two and

sweet circle”

– A participant

and change direction and speed. When asked to describe the scene, most people

invoke agency, goals and social relations to explain the motion, e.g. “The girl gets

worried and races from one corner to the other”, “The two chase around the outside

of the room together”, “They finally elude him and get away”, “He evidently got
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banged around and is still weak”. When asked to the describe the personality of the

objects people are also consistent. The large triangle is seen as “a bully”, “a villain”,

“irritable”, “angry”, “pugnacious” and so on.3

Figure 5-2: Frame from the classic Heider and Simmel stimuli in top left corner.
Lower right corner is caricature of some of the ‘unobserved’ information that people
read off the stimuli: agency, social relations and physics. Original movie is embedded,
click the picture to view.

Importantly, hardly anyone describes the scene as ‘The triangle is moving down-

wards at about 2 centimeters per second, it changes direction and is heading towards

the inner wall with reduced speed...’ although this description is as valid, and in

some ways more accurate4.

3Not every video of moving shapes elicits consistent judgments. Heider and Simmel also ran the
movie in reverse and recorded much greater variation, as the following response shows: “Man (T)
finds himself in chaos, which finally resolves itself into a sort of cell representing Fate. He is able
to free himself (but only temporarily), when Woman (c) accompanied by Evil (t) comes upon him,
and disrupts his momentary peace. He feels called upon to rescue her, but Evil imprisons them
both by Fate, from which Man escapes, leaving the woman there for safe-keeping. He at first seems
to vanquish Evil, but Woman comes into the picture again and again disrupts Man. She goes off
with Evil, as he seems the winner of the struggle, and Man, not understanding her, himself, or
anything, resigns himself to Fate.”

4In the original study only 3 out of 78 participants did not use animacy to explain movement.
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This well-known example :

Not just animacy, physics too While people use intuitive psychology to explain

the movements of the shapes, they still need to posit something about the

physics of the situation for the common-sense explanation to make sense. Peo-

ple apparently assume that agents are solids and not inter-penetrable, that

movement incurs a cost and requires some exertion, that movement happens

locally, that collision involves a transfer of momentum, that the ‘door’ will not

move on its own and requires effort to open, that the walls constrained the

movement of the agents and so could ‘trap’ the small agent, and so on. So

while the stimuli is often touted as a case of animacy and social attribution, it

is more correctly described as an interplay between animacy and physics5.

A lot from a little The stimuli has only three simple geometric shapes, as well as

one ‘wall-shape’. The state of the shapes is characterized by their x-y coordi-

nates and their orientation. The movie is approximately 70 seconds long, with

‘state-changes’ (rotations or movements) happening at most twice per second.

So, a complete physical characterization of the state of this ‘world’ evolving

over time can be represented as a matrix of 9x140 (position and orientation

for 3 shapes over 140 steps), and some additional data about the shape dimen-

sions and wall positions. One could imagine similar low-dimensional stimuli

involving more or less shapes and somewhat longer or shorter scenarios, but

all within the same general category of ‘Heider-and-Simmel-Stimuli’ (HSS). So,

HSS seem like a tractable target for the computational modeling of how people

This data is pooled across conditions in which participants were asked to describe the scene without
overtly being told to use agent-like explanations [79].

5[33] explored how constraints affect the interpretation of animate behavior, showing how phys-
ical objects (like walls) are necessary for perceptions of goals (like chasing) in infants.
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attribute intent and relation, goal and effort, mass and emotion.

5.2 Lineland, a minimal Heider-and-Simmel world

5.2.1 Why not model the original Heider-and-Simmel world

directly?

Is an input of 9x140 tractable, though? To answer that we must consider the size

of the input space itself. In the same way that 30x30 pixel squares can be used to

tractably study object recognition, but also produce a frightening number of possible

inputs6. A large input space means that planning algorithms, necessary for models of

intuitive psychology, might falter. I’ll sketch the planning space, and then introduce

a more minimal HSS which is even more tractable than the original HSS.

Assuming that something like physical dynamics governs an HSS, not every tra-

jectory is possible. That is, an object cannot suddenly radically change its (x, y)

position nor enact a huge force of any size in any direction. Assume that at any

point in time an agent can take an action out of a set A, which could include rotat-

ing clockwise and counter-clockwise, or moving in some radial direction with some

force. For the sake of simplicity, we assume that there are 4 rotating actions: Big

rotate clockwise, small rotate clockwise, big rotate counter-clockwise, small rotate

counter-clockwise. Further assume that there are 16 moving actions, crossing com-

pass directions with movement step-size (big/small step northeast, big/small step

north, big step northwest, etc.). If we include ‘do nothing’, we have 21 possible

actions per entity, at every time-step. Thus we have a space of 63140 joint-plans to

consider. That’s a lot.

62900 assuming pixels are black or white.

183



One could try to get around the size of the input space by considering sampling-

based planning algorithms, such as Monte-Carlo-tree-search [29, 19] or Rapid Ran-

dom Trees (RRT) [105]. RRTs are particularly suited for this domain, being useful

for cases where there is a finite set of actions but a continuous state-space governed

by force dynamics. Such dynamic planning algorithms are at the forefront of current

planning research, and are difficult to invert for inverse planning. The point of this

t=90

t=1643

RRT searching a

2D space

chapter is not to wrestle with the implementation of a suitable dynamic planner, but

to consider a minimal version of the problem and see what can be said about the

necessary components of even a simple generative reasoning model.

A minimal HSS should be tractable, but also retain the interesting properties of

the original HSS. This brings us to Lineland.

5.2.2 Introducing Lineland

Occluder

Agent / Object

Ground

[x1, v1, a1] [x2, v2, a2]

Figure 5-3: Depiction of Lineland, including visible elements and properties. Circular
entities all share the same y-position and can only move along the x-axis, thus their
state is fully specified by a single number x.
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In Lineland there are entities (circles), occluders (squares) and the ground (ground).“I had retired to

rest with an

unsolved problem in

my mind. In the

night I had a

dream.”

– The Square

imagines Lineland

Entities can only move along a one-dimensional line, and they all share the same y-

position. Lineland is also discrete in space and time, and entities cover an integer

distance at each time step. Since the circles have no orientation, the state matrix

defining a ‘scenario’ in Lineland is 2 × N , where N is the number of discrete time

steps allowed.

The original HSS included a ‘room’ object and 3 entities moving and spinning in

a 2D environment. In this restricted Lineland we have 2 objects moving left and right

along a single dimension7. The set of possible ‘trajectories’ to consider in Lineland

will depend on the set of possible actions each entity can take, but it is clearly a

small subset of the original HSS space.

5.2.3 Scenarios in Lineland

Can such a world still support social and physical inferences? Yes, as I’ll show be-

low. I discuss 12 different stimuli in a restricted version of Lineland, where scenarios

unfolded over just 8 time-steps. These stimuli were shown to 100 participants on

Mechanical Turk (59 men and 41 women). Participants were told that they would

see short snippets of movies from ‘Lineland’, movies that depict colored shapes mov-

ing around8. They were informed that some shapes are ‘people’, while others are

‘objects’. Participants were asked to:

1. Describe in free-form what happened in the movie.

7In the 1884 book Flatland [1], the Square protagonist actually considers a one dimensional
world called Lineland, but there objects are lines and dots without area, quite ill-suited for our
purpose. Still, the name seems apt.

8The full experiment can be seen here: http://www.surveygizmo.com/s3/1896329/

Lineland-2
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2. Pick any of the following labels that apply to the movie: Chasing, fighting,

bumping, enemies, friends, attracting, repelling, dragging, resisting, pushing,

sliding, fleeing.

3. Decide for each shape whether it is a ‘person’ or an ‘object’, and if it is a

person to choose which of the following goals best describes it: Move itself to

the right, move itself to the left, move the other shape to the right, move the

other shape to the left, help the other shape, hinder the other shape, get close

to the other shape, run away from the other shape. . . .

I present the scenarios verbally and with accompanying figures. Each figure in-

cludes a schematic of the scenario, participants’ animacy ratings and a histogram of

the labels participants endorsed. The free form responses can be found at http://

www.mit.edu/~tomeru/lineland/lineLandResponses.txt. Note that of 100 par-

ticipants, 30 judged none of the entities as a ‘Person’ in any scenario (Fig. 5-4), and

so any variability in the animacy ratings is going to be due to the other participants.

Given that, the animacy ratings omit these 30 constant participants9.

Launching, equal mass: Fig. 5-5(a) shows a classic Michotte-like launching

[119]. The Blue Circle (BC) begins at uniform speed, stops upon contact with“It looks like a

billiards game”

– Participant

Red Circle (RC), which begins motion at the same uniform speed. Variants of this

trajectory have been used to explore impressions of causality, varying the temporal

and spatial gap between objects [148]. It’s not my intention to tread over this well-

trod area again, just to note that this impression is possible.

Launching with different mass: Fig. 5-5(b) shows BC moving at uniform“Blue slides into

Red but Red is a

heavy load and just

repels Blue.”

– Participant

speed towards RC as before, but this time upon contact it moves back to the left

9It’s possible those participants were consistently being lazy, as choosing an entity as a ‘Person’
means choosing their goal
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0.0 2.0 4.0 6.0 8.0 10.0

Number of animacy judgements across scenarios

0

5

10

15

20

25

30

N

Figure 5-4: Histogram of animacy ratings across scenarios. For example, in 10 out
of the 12 scenarios, 7 people judged at least one of the entities as animate. 30 people
judged none of the entities as ‘person’ in any scenario.

at reduced uniform speed, while RC begins moving to the right with low uniform

velocity. Fig. 5-5(b) shows BC moving with uniform speed into RC, and continuing

at reduced speed to the right, while RC begins moving to the right at a greater speed

than the BC had initially. The impression is meant to be that of launching, similar

to but with a sense that the masses of RC and BC are different. In Fig. 5-5(b) the

impression is that BC < RC, while in 5-5(c) the impression is that BC > RC.
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(c)

Figure 5-5: Static images of dynamic sequence giving impression of BC launching
RC, with (a) massBC = massRC , (b) massBC < massRC , (c) massBC > massRC
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(b)

Figure 5-6: Static images of dynamic sequence potentially giving impression of BC
dragging RC, or RC pushing back BC. Depending on the interpretation (dragging
or pushback), either massRC or massBC are smaller in (a) than in (b).
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Dragging/Pushback: Fig. 5-6(a) and (b) show snapshots of a stimuli intended

to more directly evoke a sense of animacy. BC approaches RC, comes into contact“blue meets red and

takes him home”

–Participant

with it and then reverses direction, followed this time by RC. It seems that either

BC is coming up to RC and “dragging” it back to the left, or RC is pushing BC

back after the two encounter. Participants reported seeing either one or the other,

or both. The two scenarios should also evoke different senses of mass compared to

one another, but the exact inference should depend on the interpretation. If BC is

being pushed back by RC, than BC should appear heavier in Fig. 5-6(b) compared

to (a). If BC is seen as dragging RC then it is RC that should appear heavier.

Pushing: The following stimuli, shown in snapshots in Fig. 5-7(a) and (b), is

intended to be ambiguous between animacy and non-animacy. BC moves towards

RC, comes into contact with it, and then continues to the right, staying in contact“The blue ball

rolled into the red

ball and pushed it.”

–Participant

with RC who is also now moving to the right. The impression is that BC is possibly

pushing RC, whose mass in (b) is greater than its mass in (a). Alternatively this

could be seen as a plastic collision, with both circles being inanimate objects and

BC having started with some initial velocity.

Attracting and repelling: Another set of ambiguous stimuli involve RC and

BC both moving towards or away from one another. Such stimuli, showing in Fig. 5-

8(a-c) can give impressions of attraction (a) and repulsion (c), although they can also

be interpreted as the objects starting with some initial velocity towards one another

and bouncing off. Attraction and repulsion could be interpreted as a physical force“I feel like they are

coming together as

friends or like a

magnet and being

attracted to one

another.”

–Participant

pushing and pulling at the objects, or as the objects having some goal of being closer

or farther from one another. The impression of acceleration and deceleration may

also play a part here. Consider how uniform velocity and then stopping may be seen

as more ‘intentional’ attraction than an acceleration, which is more in line with an

attractive force dependent on distance. The modal labels for (a) were ‘attraction’
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(b)

Figure 5-7: Static images of dynamic sequence potentially giving impression of RC
pushing BC with massRC in (a) being smaller than that in (b).
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(c)

Figure 5-8: Static images of dynamic sequence with RC and BC both moving to-
wards or away from one another, potentially giving impressions (a) attractive forces,
(b) physical bouncing and (c) repelling forces.
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and ‘friends’, for (b) it was ‘bumping’, and for (c) ‘repelling’ and ‘fleeing’.

Chasing, fleeing and resisting: Fig.5-9(a) and (b) show stimuli designed to

evoke a sense of animacy for both entities, not just BC. In Fig.5-9(a) BC beings “Fight!”

–Participantto move towards RC, which itself begins moving away from BC before contact is

achieved. RC accelerates and disappears from view. This stimuli evoked strong

senses of ‘chasing’ and ‘fleeing’ participants, although some report seeing ‘repulsion’

or ‘pushing without touch’. In Fig.5-9(b) BC makes contact with RC and then

begins moving back to its original location, with RC moving in that direction too.

However, the two both shift direction, and then a gap is formed between them as RC

accelerates to the right. Some participants reported this as a case of several shoves,

while others described ‘a fight’, ‘a power struggle’ or ‘a mugging’.

Many other scenarios are possible. I focused on this subset to show how even in

this simple world people can have different possible impressions of physical proper-

ties, goals, agent-object interactions and agent-agent interactions. A “whole-scene”

interpretation relies on reasoning about the physical, psychological and social do-

main at the same time, and as in the original HSS, if we had a model that took

these displays as input and produced common-sense explanations as output, we will

have gone a long way. But what is the right way to construct such a model? One

temptation is to focus on the ‘simple’ aspect of these simple trajectories, and con-

clude that a kind of motion-feature library could be built of these space-time curves,

used for classification without the need to bring in complicated mental models. This

has certainly been the direction in some branches of development and perceptual

research, which I consider in the next section.
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(b)

Figure 5-9: Static images of dynamic sequence potentially giving impression of (a)
BC chasing after a fleeing RC and (b) BC struggling with RC which then flees.
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5.3 Perceptual-Cue Classification of Objects and

Agents (and Why It Probably Won’t Work as

a Standalone)

5.3.1 The cue-based tradition

As discussed in Chapters 1-3, there is a long history in psychology of trying to find

perceptual cues for the attribution of physical and psychological states. Going back

at least to Michotte’s observation that people see in situations much more than

is directly perceptually present, from ‘causality’ to things such as ‘drinking’, the

view was that a scene had certain properties that were picked up by perceptual

detectors that triggered a psychological state. For example, a detector for for ‘causal

launching’ might take the form “IF an object A approaches a stationary object B,

AND upon contact object B moves, THEN object A is perceived to ‘cause’ B to

move” [119]. Such an observation is then embellished on by countless studies of the

exact conditions which ignite the ‘launching trigger’, varying velocities, spatial and

temporal gaps, and so on. The perception of more specific physical properties (such

as mass) were also suggested to come about through cue-heuristics (such as relative

velocity) [140, 55].

The perception-based view was also extended to social and psychological attribu-

tions. Again going back at least to Michotte [119] but continuing up to the present

[148, 181, 47], the idea is that the trajectory of an object has certain properties that

are picked up by fast perceptual detectors for distinguishing simple goals (“it wants

to get there”), social goals (‘dancing’, ‘chasing’, ‘hunting’, etc.), relations (‘friends’,

‘enemies’, ‘lovers’, etc.) and basic distinctions such as animacy/inanimacy. As one
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proposal put it, if an object suddenly changes its velocity without any obvious exter-

nal obstacle or constraint, that is a strong cue for animacy [181]. Additional detectors

refine the perception. For example, one detector might detect animacy, and then if

two animate objects take part in a particularly tight spatio-temporal trajectory, they

might be seen as ‘chasing’ or ‘dancing’ [148]. The hope of these approaches is that

one can build up a ‘grammar’ or ‘library’ or ‘set of components’ of simple motion-

paths [147], which either interact to convey the meaning of more complicated paths,

or simply compete for dominance of the explanation. The general research program

is to analyze simple scenes and hunt for the minimal ‘cues’ or ‘features’ that distin-

guish mental attribution. As one example, Blythe has suggested that seven motion

cues are sufficient for distinguishing animacy from non-animacy as well as the inten-

tion of animate agents in several tasks [16]. Researchers in the cue-based tradition

usually suggest these cues are either built-in or early-emerging, based on work with

human infants [148, 33], primates [183] and across cultural groups [11].

Researchers in development also hunt after ‘cues’ for physical causality and an-

imacy (also referred to as ‘social causality’) [146, 145, 143]. There is an ongoing

debate about how much experience matters in detecting animacy, but work with

newborns [143] and control-reared chicks [113, 135] found that at least some ‘cue-

detection’ is present at birth in vertebrates. These innate cues include ‘physical

causality’ detectors for Michotte-like causality, ‘animate’ detectors for self-propelled

motion, and ‘life’ detectors for (upright oriented) biological-like motion [143]. This

view leads to fine-grained experiments regarding the exact relevant cues, and to de-

bates about whether it is self-propelled motion that is the primal cue, or perhaps

contingent interaction [145], etc.

What would the feature-based approach make of Lineland? It might begin with

an analysis of the curve of the ‘world-line’ described by each entity, and the distance
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between them, or it might show these stimuli to infants, children and adults to try

and tease out the relevant cues for judgments like ‘power struggle’. It might even

succeed in identifying some useful cues for the stimuli presented.

Here, then, is one broad characterization of what takes place during infancy

and development according to this view (see also Fig.5-10): A baby views a certain

scene. Static and kinetic properties of the scene trigger innate or early-developing

detectors that “push” the processing of the scene into one of the domains of core

knowledge. For example, self-propelled motion might trigger ‘animate’ detectors,

which relay the processing to the core agency system. Once the scene is classified

as belonging to certain a core knowledge domains, it is subject to innate or early-

developing expectations. For example, an animate agent is expected to propel itself,

resist forces and exhibit preferences, etc. [168]. Further detectors are called on to

refine the classification, either in a cascading hierarchy (self-motion analyzer detects

animacy → relative velocity analyzer detects social interaction → vorticity analyzer

detects courtship → . . . ), or just all ‘fire’ at once. Development and learning is

then the training of further classifiers / decision-trees to guide expectations about

particular scenes [6]. For example, children might learn that in a scene classified as

‘inanimate object stability scene’, it is important to pay attention to the variable

‘distance from edge’, and that there is a rule such that IF an object is inanimate

and is a certain distance from the edge of the table, THEN it should fall [6].

This view is incomplete. I do not mean that some cues and heuristics are not

real or useful10, but it seems hopeless to think that a long list of cues and features

can make something that has as output the reports of people upon seeing the Heider

10As discussed in Chapters 2 and 3, these cues might act as lens that quickly focus attention
on small parts of a hypothesis space, or they might act as ‘hooks’ that a pre-existing conceptual
framework can use in order to latch onto parts of a perceptual scene [185].
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Figure 5-10: Characterization of feature-based approach to core knowledge: (i) The
general progression is from a perceptual scenario going through finer and finer clas-
sification using different features. (ii) Applying the stages on the left-column to a
specific example.
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and Simmel stimuli. And stimuli that are too simple – like using a single object on a

2D plane and varying its acceleration [181] – might not be a way of finding minimal

cues of animacy, but rather a pathological case where theory-based attribution is

stretched to its limits.

Scholl and colleagues, in particular, argue against the involvement of ‘higher-level’

cognition in making fast, consistent and automatic social and physical attributions.

As they put it, ‘The perception of animacy is more akin to the perception of depth

and color in a painting than to the perception of sarcasm or irony in a painting” [147].

But in between these two extremes there is still a wide range, one that is occupied

among other things by our core knowledge - rapid and difficult to penetrate, but

still conceptual to a certain degree, and possibly captured by theory-like generative

models such as the ones described in this thesis.

In the next section, I propose a different approach. When distinguishing between

‘animate’ and ‘inanimate’, we must first describe what our theories of the physical

and psychological world are, and how they relate. The perception of animacy can

then be seen as a form of hypothesis-testing between these competing theories. Cer-

tain aspects of the motion paths might emerge as particularly diagnostic for such a

calculation, and the most general ones might turn out to be useful cues to build into

any intelligent system. But those cues are in the service of the more theoretical-based

distinction, not the distinction in and of itself.
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5.4 A Joint Model for Reasoning About Physics

and Psychology

5.4.1 General Considerations

In the previous chapters I considered models of physical and psychological reasoning

in isolation, but the two seem linked on a fundamental level. I consider the parallels

between the two domains and their formalization, contrasted with other domains.

The elementary building blocks of the intuitive physics model are entities with

properties that update according to forces. Some of the properties are assumed “priv-

ileged” - they are shared by all entities. Entities are further divided into dynamic

entities and static entities, dynamic entities being the ones expected to move and so

having the privileged property mass. The forces act on dynamic entities and update

their accelerations under a general assumption of noisy Newtonian dynamics, where

a = F
m

+ ε.

The elementary building blocks of the intuitive psychology model are agents

with utilities, with different possible states updated according to actions. Agents

differ in their recursive reasoning abilities and relations, and utilities can be divided

according to whether they are ‘about’ states of the world, or other utilities. Agents

generate according to their utility functions, under a general assumption of rational

planning, and these actions update the state of the agents.

Using these building blocks, each of the frameworks construct their hierarchy,

each level bringing them closer to specific observable scenarios. The intuitive physics

model specifies particular forces (springs, attraction, ...) and entities (pucks, blocks,

magnets, ...). The intuitive psychology model specifies particular utilities (location

goals, social goals, ...) and agents (evil, good, recursively reasoning, ...). The intuitive
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physics model grounds out as physical objects moving along observable paths. The

intuitive psychology model grounds out as agents taking a series of observable actions

in pursuit of goals.

Each of these frameworks represents a unification of principles within separate

core domains [168]. Even though their elementary building blocks appear quali-

tatively different, these formalizations show that the general structure of the two

domains is similar: Both frameworks proceed along similar lines by going from ab-

stract principles to grounding out in perception. Both frameworks support similar

inference mechanisms and learning at all levels of the hierarchal model, and they can

both be applied to a potentially infinite number of real or fictional scenarios. Both

frameworks are concerned with entities producing some observable trajectories. Fi-

nally, both frameworks produce scenarios that can end up looking similar: entities

moving over time.

So, there are similarities in both the functional form and the end-products of these

core domains. But could such an argument be made for any pair of core domains?

Not necessarily. Consider for example the core domain of number, and a recent

model of number word acquisition suggested by Piantadosi et al. [130], which is also

based on probabilistic generative programs. This model assumes a small number of

primitives for testing the cardinality of sets (e.g. singleton?, doubleton? ), the ability

to perform simple set manipulations (e.g. set-difference), simple logical operators,

recursion, and the combination of primitives. Using these primitives and given the

right data, the Piantadosi model can go through the stages of number acquisition,

moving from a 1-knower (someone who can pick out a set of size 1, but nothing else)

to a Cardinal-Principle-knower (someone who can pick out sets of any size) ([26].

Some of these required primitives (like recursion and logical operations) might exist

in other core domains, though it is an open question whether the primitives are part

201



of a shared ability (a general ‘and’ operation) or exist independently in each domain

(and-number, and-agent, and-object and so on). Still, the majority of the relevant

primitives are not shared at an abstract level with psychology and physics. The

hierarchical structure of the generative program does not match the other domains,

nor does it lead to data that explains the motion of entities. The whole domain might

exist as a sort of ‘function-call’ within a task in the other domains when needing to

keep track of the entities, but it is not a competing hypothesis for the explanation

of the data per se.

5.4.2 The Formalization of Lineland

Based on the parallels described in the previous section, the minimal things that

need to happen in order to tie the models of physics and objects are these: First,

the transition function T (S,A)− > P (S ′) needs to be informed by a physics-engine,

rather than being built in by hand as no different from a general constraint11. Second,

the inference must consider both physical forces and agents as potential explanations

of motion. Third, the actions of agents must be ‘physically appropriate’. That is,

the actions need to be made in a way that the transition-function-physics-engine

can accept as input. Applying these ideas to Lineland leads to the following model,

depicted in Fig. 5-11

Briefly summarizing, the generative model of Lineland works as follows: A num-

ber of entities are chosen; all entities are assigned agenthood/objecthood and phys-

ical properties; the entities assigned agenthood are also assigned a goal; the world

is assigned general force dynamics; the entities are given initial conditions (posi-

11The reason an agent in the grid-worlds of Chapter 2 could not go into the black squares is not
because they are considered ‘wall objects’ with the appropriate collision dynamics, but because the
transition matrix was hard-coded so that agents cannot go on black squares.
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Figure 5-11: A generative approach to joint physical and psychological reasoning in
Lineland: (i) The general progression is from top level assumptions about dynamics
and agency in general, through finer and finer specification of what agency and
physics is like, bottoming in an observable scenario (ii) Applying the stages on the
left-column to Lineland.

tion, velocity, acceleration); the agents select a plan of forces; the scenario plays out

according to the discrete physics engine combined with the actions of the agents;
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perceptual noise is added to the scenario.

Following is a description of the model is more depth:

Top-level, entities: The possible entities of interest in Lineland are objects and

agents. Agents and objects both have similar physical properties, some of which

are observable (e.g. shape, position, velocity) and some of which are unobservable

(e.g. mass). The properties of both agents and objects are updated by the transition

function T , which is now equivalent to a physics-engine “step”. A “step” operation

takes the state of the world as input, including constraints and forces, and updates the

accelerations, velocities and positions of all objects using a Newtonian-like dynamics

[28].

Top level, discrete dynamics: The 2-dimensional world is divided by a grid

into cells (similar to Chapter 2, except entities can now take up several grid-cells).

An agent or object can only move in cells, which I will measure in units of “cell” or

c. Time is also discrete. So, the dynamics are quite simple:

x(t) = x(t− 1) + v(t− 1) ∗∆t (5.1)

v(t) = v(t− 1) + a(t− 1) ∗∆t (5.2)

a(t) =
F

m
(5.3)

Where the total force acting on a particular entity Fe is the vector-sum of all the

different forces acting on it:

∀e
−→
F e =

N∑
i=1

−→
f i
e (5.4)
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Since Lineland is one-dimensional, I will omit the top-arrow vector notation and

adopt the convention that positive numbers indicate forces, accelerations and veloc-

ities ‘pointing’ to the right, and negative ones ‘point’ to the left.

I set ∆t = 1 in arbitrary units called “Steps” or s. So velocity will be in units

of c
s
. Acceleration will be in units c

s2
. Collisions are handled by considering the

pre-collision velocity of entities and their masses, and solving for a one-dimensional

collision12.

Top level, actions as forces: Just as in the ‘inverse planning’ framework [8],

at any time step every agent takes an action a ∈ A, where A is the set of all

possible actions. In order for these actions to be compatible with the physics-engine

transition function, actions are local forces that an agent can generate on itself and

its immediate surrounding. Such an agent, even without any goal, can be seen

as capturing the notion of mechanical agency, in that it is capable of self-propelled

motion and resisting forces acting upon it [26, 160]. Beyond this, agents are also able

to create and annul constraints between themselves and nearby entities (commonly

referred to as ‘joints’ in the physics planning world [28]).

Top level, planning: Again as in the ‘inverse planning’ framework, agents take

their actions a ∈ A at any given time step in order to maximize their utility or satisfy

a goal, constrained by their beliefs about the world. Goals and utilities can be defined

over the state of the world itself, or in relation to the utilities and goals of other

agents [186]. The exact nature of the planning mechanism is less important here,

whether it is a Markov Decision Process (MDP) [9, 8], an RRT [105], or something

else. It suffices that there be some forward-mechanism that goes from probability

12Nearly all popular physics engines include a ‘collision-detection’ module that carries out pre-
and post-collision computations, although the exact method for resolving collisions differs between
one engine and the next. See also the Afterthought to Chapter 3 regarding the cognitive implications
of this ubiquitous engineering notion.
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distributions over states and utilities to actions. We can approximate such a planner

through a procedure described later in the next section.

Mid-level, space of possible forces and physical properties: Similar to

Chapter 3, I will restrict the forces to be either ‘global’ or ‘pairwise’. Global forces

act on all entities either in the positive or negative direction (to the right or to the

left, when considering a one-dimensional line). Pairwise forces are either attractive

or repulsive. Directly observable properties include color, shape and position. Mass

is an unobservable physical property which I restrict to be 1 or 10. One can imagine

making friction a possible unobservable property similar to Chapter 3, but for the

purposes of this chapter it is possible to ignore it.

Mid-level, space of possible actions: I will restrict the set of actions to be

A = {±K;±joint}. K = 0, 2, 3 are the possible magnitudes of the force, where 0

indicates a non-action. A +joint means the agent creates a joint-constraint with

a nearby entity, while −joint is a removal of such a joint. This means that given

N time-steps in a scenario, there are 7N possible trajectories for any setting of the

initial conditions and physical properties.

Mid-level, space of possible goals: I will restrict the set of goals to be of

the form ‘Get entity E as close as possible to position P ’, where a position could be

absolute or in relation to another entity. So, a goal for Agent1 could be to get itself

to a particular world position, or get Agent2/Object2 to a particular world position,

or get as close/far away as possible to/from Agent2/Object2.

Bottom level: Entities are assigned initial properties (positions, velocities, ac-

celerations, mass). Agent entities are assigned particular goals, and specific force

values are sampled.

Observable data: Based on these initial conditions and in combination with

the force-actions of the agents, the discrete physics engine described above simulates
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forward a trajectory for some number of steps. Finally, Gaussian perceptual noise is

placed on each point along the trajectory.

5.4.3 Planning in Lineland, utilities and costs

As mentioned in the previous sections, there are several ways to solve the planning

problem in Lineland, including Multi-agent MDPs and RRTs, but the details of the

specific algorithm matter less. One can also approximate a planning algorithm in the

following way: For each initial condition and setting of the physical properties and

forces, I consider the set of possible trajectories resulting from the agent taking any

possible sequence of actions13. These trajectories are then scored under the different

utility functions of the agents. An agent selects a trajectory according to its utility

using a soft-max policy:

P (trajectory) ∝ e−β·U(trajectory)), (5.5)

where U is the utility function and β is a noise parameter [9, 186]. Utility

functions will depend both on the state of the world and on the number of actions

taken:

U(trajectory) =
N∑
i=1

d(statei, stategoal)− k · |Fi| (5.6)

where d(x, y) is a distance metric, Fi is the force the agent used to get to statei

and k is a positive scaling parameter between actions and rewards. In the most

general terms, such a utility function means that agents will prefer being ‘close’ to

their goal state, that they will prefer to use as little force as possible to get there,

13For a single agent with A actions and N time-steps, there are |A|N trajectories to consider. A
multi-agent problem would mean the product of actions, giving (|A|x|A|)N trajectories.
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and that there is some trade off between the cost of using a force and the reward of

being near or at the goal. The exact details of k and d could result in ‘strong’ and

‘weak’ agents, or ‘motivated’ and ‘unmotivated’ agents.

5.4.4 Resistive friction

So far, if an agent enacts a force and then stops, it will go on tumbling forever.

There is something unappealing about the view that an agent can go tumbling along

forever. As living creatures we constantly expend energy in an attempt to maintain

balance. Thus, I introduce a resistive friction force f that acts against the motion of

agents, such that the greater the force the agent produces, the greater the f working

against it. Let us suppose for simplicity that f(t) = −Fa(t − 1). The dynamics

of this friction are a discrete analog of two possible ways agents can move in the

continuous case: They can either generate a very large but brief force at the onset

and offset of motion (‘impulses’ in the physics engine terminology), or they might

generate a sine-like force, leading to a ‘biological’ velocity profile of acceleration and

deceleration [49].

5.4.5 An example scenario

Consider a simple launch-like event where an object of mass m1 = 1 starts at position

x1(0) = 0 and with initial velocity v1(0) = +2 c
s
. The object moves towards another

object with mass m2 = 1 at rest in position x(0) = 6. The two objects collide

in between time steps 2 and 3, and the collision is resolved according to standard

mechanics, thus the second object gains a velocity of V (3) = +2 c
s

while the first

object loses velocity and stays at rest.

Now instead, consider an agent at x1(0) = 0 and an object at x(0) = 6. The
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agent enacts a force Fa = +2k∗c
s2

at times t = 0, t = 1. This will bring the agent into

contact with the object on the right. If it again enacts +1 c
s2

at time t = 2 it will

cause the agent to have a velocity of +2 c
s

at time t = 3, and thus between t = 3 and

t = 4 we will need to solve a collision. There is some subtlety as to the question of

‘what order’ forces are resolved in during collision detection, but it can be resolved

such that the agent will launch the object at t = 4.

While the two cases described will appear perceptually identical (assuming per-

ception is limited to positions and velocities), the parsing of the scene is quite different

in terms of forces and agenthood, depending on whether entity1 is seen as a physical

object with initial velocity, or as an agent enacting forces on itself.

5.4.6 Inference in Lineland

Given a generative model and some observations O of a trajectory T , we can use the

standard Bayesian inversion to figure out the posterior probability over the hidden

variables of interest, be they physical properties, goals, forces or something else. We

will split the hidden variables into those that are about agents, ψ, and those that

are about physics, θ. Agent variables include such things as goals and costs, physics

variables include masses and non-agent forces.

The model’s reasoning is captured by the following equation:

P (ψ, θ|O) ∝ P (O|ψ, θ) · P (ψ, θ), (5.7)

We cannot go directly from goals and physical parameters to observations, we
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have to go through trajectories and a noisy observation function. Thus we have:

P (ψ, θ|O) ∝
∑
T

P (O|T ) · P (T |ψ, θ), (5.8)

where P (T |ψ, θ) is provided by the generative model, and P (O|T ) =
∏
i

e−δ(Oi,Ti),

δ being some distance metric, which here I will set to be the square distance.

If there are no agents involved in the scenario, the trajectory for a given setting

of the physical parameters is deterministic14. However, if there is an agent involved,

they could have made very poor decisions, and so we need to sum over all possible

trajectories the agent could have generated through its action-sequence.

Because each agent could theoretically generate |A|N action-sequences, integra-

tion over all trajectories for all goals and initial conditions becomes difficult. But

given a softmax decision policy with a reasonable β and a reasonable U , most action-

trajectories for most goals will have such a minuscule probability of being chosen that

we can consider only the top few action-sequences for any goal.

5.4.7 Inferring animacy in general

In Section 5.3 I noted that many of the cue-based accounts are concerned with

finding classifiers/cues for a broad ‘person/object’ distinction. Such things can be

quite simple, e.g. “If a shape has a face, it is animate”.

While not denying that such cues exist, the general question of animacy might

best be understood as a kind of hypothesis testing, summing over different sub-

theories in the space of a generative like the one described above. While the gen-

erative model can be used to answer all sorts of specific questions about goals and

14Other proposals for physics-engines as the representation of intuitive physics considered noisy
Newtonian-dynamics [12, 164].
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properties, it can also aggregate over them. The model can infer that something is

‘animate’ rather than an ‘object’ without committing to any particular goal, if the

sub-space of hypotheses in which the entity is an agent has greater probability than

the sub-space of hypotheses in which it is an object.

So, the perception of animacy also includes a notion of an alternative, pure

physics. In judging something to be animate, the model is effectively saying: “Re-

gardless of a particular goal, the behavior of the entity is such that I am hard pressed

to think of a purely physical explanation.”

5.5 Discussion

The formal framework presented one particular model for reasoning about both

physics and psychology. The model was applied to one particular domain, Lineland.

But, we can use this model and framework to think more broadly about how intuitive

physics and psychology interact. And they do interact, frequently. As adults we may

not have to worry as much about inferring animacy as infants do, but we do think

of agents as having mass, friction and other physical properties that constrain them,

and help to make sense of their behavior. Maybe we use language faculties to quickly

shuttle back and forth between our separate core domains [168], but pre-verbal in-

fants can also make common use of these domains to ‘make sense’ of a scenario. How

does this happen? How do these core systems interact?

One view already mentioned is the multi-cue view, the cues being organized

either as a cascade or all cues firing at once. As I mentioned, there is an ongoing

discussion whether cues alone could account for this kind of reasoning, but since cues

are unlikely as a sole-explanation even within each domain [186, 12] it is doubtful
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they can somehow combine together and create strength out of joint weakness15.

Another view is more akin to model selection. Each core domain (objects and“Two substances

from the

beginning...each

follows only its own

laws which it has

received with its

being, each agrees

throughout with the

other”

– Leibniz’s Clock

Analogy

agents) is able to deal independently with the end product of ‘objects moving over

time’. Just as each core domain might have its own logical not operator rather than

a cross-system shared operator [26], perhaps each domain has many other similar

functions and operators. So, inference at a higher level might be selecting the core

domain system to use, but once it is brought to bear on the task it performs all

computation on its own. This implies both systems works in parallel isolation, with

rapid switching of cognitive focus in cases like Lineland, as both systems compete to

explain the stimuli.

A slightly different option is that of independent but interacting systems:

both core domains are independent, but set up early on to interact and work jointly

when explaining perceptual scenes. The formal model presented in this chapter

approximates this view. Consider the concepts of action and transition function.

Both are central to the domain of intuitive psychology, as modeled through inverse

planning. Both are not necessarily tied to physics. An action for Mary can be
וּדעָוֹנ-םאִ יתִּלְבִּ ,ודָּחְיַ םיִנַשְׁ וּכלְיֵהֲ 

'ג 'ג  סומע --                                  

“poison Sue’s coffee”, while the transition function might encode that this action

leads to Sue’s death. This allows rational inference over Mary’s goals and motives,

without any direct involvement from the physics system. But, actions can also be

physical forces, and when they are they have a natural cost. The transition function

could accept a ready-made ‘step’ function from the physics engine. So, while the

concepts in each domain are distinct, they could be innately set up to interact with

one another in specific ways.

These different views have implications for future experiments, especially if sep-

15“The counsel of fools is all the more dangerous the more of them there are.”
– Olaf the Peacock, Laxdæla Saga
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arate brain regions can be associated with each core system. The independent but

interacting view would suggest that when reasoning about scenes involving both

physics and agents, these two core systems should somehow be able to refer to the

same entity tokens. For example, the agent system would provide information re-

garding that entity’s goal, while the physics system provides information regarding

its mass, but both refer to the entity for a single computation of likely future paths.

The parallel isolation view suggests both systems should be computing and con-

sidering future trajectories independently, each under its most likely candidate for

explaining the world.

Beyond the question of how the core systems might interact, their similarities

raise the speculative option that they start out as part of a single system.

5.5.1 Ur-system

The core systems of physics and psychology might be alike not just because of the

evidence they are asked to explain, but because they are fundamentally the same

system, or they branch out from one earlier system. This would be an “Ur-system”

that is tasked with predicting and explaining the motion of entities. Perhaps the

Royal game of Uragent-system, with its core notions of utility and goals, is the primary system and

objects are just a special kind of agent. Or perhaps agents are just objects, with

very particular forces and potential functions.

Objects from Agents

In this version of the argument, the basic units of the ur-system are utilities and

agents. Every entity is assumed to have some goal, and objects are just very simple

types of agents in terms of their utilities, actions and planning abilities. For example,
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an object in a ‘gravity well’ is an agent that ‘wants’ to roll downhill, with the highest

utility assigned to reaching the bottom of the well. This agent has some motiveAll things are full

of gods

– Thales of Miletus

force, but is only able to plan locally. If it reaches a block in the middle of the hill, it

cannot ‘plan’ beyond it and remains stuck in that position. The ur-system’s biases

continue to play out in the over-attribution of animacy, from ancient theories of the

cosmos to the modern professor explaining the an electron as ‘not wanting to share

orbitals’16. The branching of the two domains (objects and agents) is then a process

of restriction, where some agents are inferred to not have the full capacity of usual

agents.

Agents from Objects

In this version, the basic units of the ur-system are forces and objects. Every en-

tity is strictly moved by forces, whether internal or external. On this basis, some

objects are categorized as belonging to a sub-class that has frequent internal forces.

Alternatively, one can think of the basic units as being objects and potentials, where

all objects simply follow greedy descent along a potential (forces and potentials are

translatable). Most objects are guided by simple potential functions, but other ob-

jects have complicated potential functions. Such potential-field methods have been

used in robotics to generate plans and navigate [104, 96]. The branching of the two

domains (objects and agents) is then a process of generalization, where potential

fields and movement options for the sub-category of motive objects are extended to

more abstract spaces such as goal-space, configuration space and so on.

16“[W]hat makes planets go around the sun? At the time of Kepler some people answered this
problem by saying that there were angels behind them beating their wings and pushing the planets
around an orbit. As you will see, the answer is not very far from the truth. The only difference is
that the angels sit in a different direction and their wings push inward.” - Feynman, Lectures on
Physics
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Chapter 6

Afterword

“Fancy not its nature simple so” —

Lucretius discusses the mind, On

the Nature of Things

This work was concerned with formalizing intuitive theories: The space these the-

ories live in, the cogs and wheels of our basic theories, and the induction mechanism

that constructs new theories to understand the world. Some chapters focused more

on the representation of knowledge, others on learning. But each chapter examined

a mixture of these related ideas.

Back in the introduction I wanted to equip the reader with the concepts needed to

make the trek through the thesis. I hope the reader also benefited from the journey

itself, and saw some things along the way that are worth writing home about. We

are at the end of the trek, but not near the summit: a full formal account of intuitive

theories, core knowledge and theory learning. We don’t know what the view from

the top will be exactly, but looking back at the ground covered gives some sense of

it.
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On the issues of representation, there’s good reason to think that core intuitive

knowledge relates conceptual primitives through a generative framing, a kind of

reverse-engineering of how the world works in a particular domain. There’s also

good reason to think that finding the right generative framing is hard, domain-specific

work. Even in domains where a proposed frame exists (game engines for intuitive

physics and a planning for agency), there’s still a lot of conceptual, computational

and experimental work left. For computational models, one generally-applicable

advice is to consider for each knowledge domain how engineers had to tackle similar

challenges in the ‘forward’ direction. As an example, software engineers need quick,

cheap ways to simulate physics scenes. Their generative framework, along with tricks

and hacks, make good candidates for mental frameworks of physics.

On the issue of learning, the stochastic search hypothesis put forward in Chapter

4 is almost certainly incomplete [151]. But the notion of taking the best current

algorithms for searching structured, hierarchical spaces and examining them in the

light of development and children’s learning seems like the right way forward, re-

gardless of the particular stochastic search proposal. Computational researchers and

engineers have to come up with clever ways of searching conceptual spaces, and they

likely come across the same sorts of difficulties and hacks that any rational agent

would have to work through. While many of these researchers do not consider psy-

chology, nearly every algorithm put forward in Machine Learning has been suggested

by someone as ‘the way the human mind does it’. These suggestions rarely make

contact with child development, though, and could benefit from it.

So much for the general geography of formal intuitive theories, as seen from the

current vantage point. Before closing, I want to point out some hazy things in the

distance, avenues for future research within the general approach taken.
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Intuitive psychology and intuitive sociology, agents and groups The build-

ing blocks of the core agency domain are goals, beliefs and contingent efficient

actions. But there is much more to being a mental being. What about social

circles, membership, in-group and out-group, hierarchies, dominance, imita-

tion? These are distinct concepts that form a kind of ‘intuitive sociology’.

It has been suggested that this intuitive sociology is another core knowledge

domain, as separate from agency as agency is from number [168, 131]. The

general principles of this domain have not been worked out yet and remain the

focus of much current research, but already we can ask some questions about

the relationship of this domain to the domain of agency: Are agency and soci-

ology distinct domains that operate in isolation? One domain? Two domains

that communicate through some pre-established channels? What can a formal

account tell us?

These questions are similar to the ones raised in Chapter 5 about the relation-

ship between intuitive physics and intuitive psychology. Unlike that chapter,

we don’t yet have a concrete formal generative model of core social knowledge.

One candidate is a graphical-network generator, of the sort that can generate

cliques, chains, trees, hierarchies and so on to [88] reason about relations be-

tween entities. But even if we had such a worked out model, it still wouldn’t

be clear if it exists separately from a domain of agency, or physics for that

matter. One possible way to link it with agency is through the prior on goals

and beliefs. To see this, recall that the inference in the domain of agency was:

P (Goal, Belief |Action) ∝ P (Action|Goal, Belief) · P (Goal, Belief), (6.1)
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and that P (Action|Goal, Belief) came from a planning principle. Where does

P (Goal, Belief) come from? Our probabilities over likely beliefs might come

from a theory of perception, and our probabilities over likely selfish goals might

come from some theory of hedonic sensation, but what about social goals? In

Chapter 2 it was taken for granted that some agents help, some hinder and

some are selfish. But surely we don’t just have an arbitrary prior over these.

We think people are generally likely to help, but also that they are likely to

help people in their in-group and harm people in their out-group. The action

of helping might be praiseworthy or blameworthy, depending on whether we

helped a friend or enemy. Predicting, understanding, rewarding and punishing

social behavior seems to require both a notion of social goals and a notion of

group identity. So, the full treatment of reasoning about Heider and Simmel

like stimuli will likely involve agency and physics, but also sociology.

Common sense in uncommon situations Our core intuitions and theories are

not just about the world we find ourselves in. They are also about the worlds

we can imagine, the close neighbors and far relations of the one we inhabit. As

an example, imagine a wizard that can levitate a frog several feet off the ground,

or conjure a frog into existence. Which of these feats is more impressive? Which

takes more effort? We intuitively say the second as harder, but of course both

are magic. Both are in some sense ‘impossible’.

This is not a new claim, not in general nor in psychology. Walt Disney referred

to instances of the ‘plausible impossible’, how we believe some imaginary things

make more sense than other imaginary things. Some psychology researchers

also see the imagination as a rational process that gets at the ‘fault-lines of

reality’ [21].
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Intuitive theories, especially those of psychology and physics, could be the “The natural world

has its laws, and no

man must interfere

with them...but they

themselves may

suggest laws of

other kinds, and

man may, if he

pleases, invent a

little world of his

own, with its own

laws” (George

Macdonald, The

Fantastic

Imagination)

underpinning of the plausibility of unreal worlds. So, notions of magic seem

a particularly useful direction to explore as a way of getting at those intuitive

theories. Creating a frog seems ‘harder’ than levitating it, perhaps because the

first violates basic core object principles, while the second changes a property

the object happens to have (location), furthest down on the hierarchy of prop-

erties described in Chapter 3. Our intuitive theories might also explain how

we pick out the relevant properties within a violation, not just across viola-

tions. We know mass is the relevant property for levitation spells (it’s harder

to levitate a frog twice as massive, but not one twice as green), but in the case

of an invisibility spell surface area might be more relevant than mass. Magic

involving animate beings could tap into our intuitive psychology. Our sense

of utility provides a natural metric for unnatural transformations of specific

utilities (it’s probably harder to magic someone into eating Brussels sprouts

than it is to magic them into eating chocolate). Similar considerations might

apply for belief and perception.

The previous paragraph was made of reasonable hunches, stitched together

with pilot data, and it offers only a general roadmap for future research. It will

take large-scale experiments, asking people to systematically rate the difficulty

of various violations, to examine these ideas further.

The full understanding of the nature and origin of our intuition and common

sense is still far off. But I am optimistic that the right formal tools for building this

understanding are within reach.
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[80] Susan Hespos, Gustaf Gredebäck, Claes von Hofsten, and Elizabeth S. Spelke.
Occlusion is Hard: Comparing predictive reaching for visible and hidden ob-
jects in infants and adults. Cognitive Science, 33:1483–1502, 2009.

[81] Susan J. Hespos and Renée Baillargeon. Young infants’ actions reveal their
developing knowledge of support variables: Converging evidence for violation-
of-expectation findings. Cognition, 107:304–316, 2008.

[82] David Hume. A Treatise of Human Nature, volume 26. 2000.

[83] Gavin Huntley-Fenner, Susan Carey, and Andrea Solimando. Objects are in-
dividuals but stuff doesn’t count: Perceived rigidity and cohesiveness influence
infants’ representations of small groups of discrete entities. Cognition, 85:203–
221, 2002.

[84] A Jern and C Kemp. Reasoning about social choices and social relationships.
In P Bello, M Guarini, M McShane, and B Scassellati, editors, Proceedings of
the 36th {A}nnual {C}onference of the {C}ognitive {S}cience {S}ociety, 2014.

[85] Susan C Johnson, Virginia Slaughter, and Susan Carey. Whose gaze will infants
follow? The elicitation of gaze-following in 12-month-olds. Developmental
Science, 1:233–238, 1998.

[86] Y Katz, N D Goodman, K Kersting, C Kemp, and J B Tenenbaum. Modeling
Semantic Cognition as Logical Dimensionality Reduction. Proceedings of the
Thirtieth Annual Conference of the Cognitive Science Society, 2008.

[87] C Kemp, N D Goodman, and J B Tenenbaum. Learning and using rela-
tional theories. Advances in Neural Information Processing Systems, 20:753–
760, 2008.

227



[88] C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proceedings
of the National Academy of Sciences, 105(31):10687–10692, 2008.

[89] Charles Kemp, Amy Perfors, and Joshua B. Tenenbaum. Learning overhy-
potheses with hierarchical Bayesian models. Developmental Science, 10:307–
321, 2007.

[90] Charles Kemp and Joshua B Tenenbaum. The discovery of structural form.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 105:10687–10692, 2008.

[91] Charles Kemp and Joshua B Tenenbaum. Structured statistical models of
inductive reasoning. Psychological Review, 116(1):20–58, 2009.

[92] Charles Kemp, Joshua B. Tenenbaum, Sourabh Niyogi, and Thomas L. Grif-
fiths. A probabilistic model of theory formation. Cognition, 114:165–196, 2010.

[93] J Kiley Hamlin, Tomer Ullman, Josh Tenenbaum, Noah Goodman, and Chris
Baker. The mentalistic basis of core social cognition: experiments in preverbal
infants and a computational model. Developmental science, 16(2):209–26, mar
2013.

[94] J. Kiley Hamlin, Karen Wynn, and Paul Bloom. Three-month-olds show a
negativity bias in their social evaluations. Developmental Science, 13:923–929,
2010.

[95] In Kyeong Kim and Elizabeth S Spelke. Infants’ sensitivity to effects of grav-
ity on visible object motion. Journal of Experimental Psychology: Human
Perception and Performance, 18(2):385, 1992.

[96] Jin-Oh Kim and Pradeep K Khosla. Real-time obstacle avoidance using har-
monic potential functions. Robotics and Automation, IEEE Transactions on,
8(3):338–349, 1992.

[97] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by simulated an-
nealing. Science, 220:671–680, 1983.

[98] B. Klahr, D. & Macwhinney. Information Processing. In Handbook of Child
Psychology, pages 631–678. 1998.

[99] K P Kording and D M Wolpert. Bayesian integration in sensorimotor learning.
Nature, 427(6971):244–247, 2004.

228



[100] V Kuhlmeier, Karen Wynn, and Paul Bloom. Attribution of dispositional
states by 12-month-olds. Psychological Science, 14(5):402–408, 2003.

[101] Thomas S Kuhn. History of Scientific Revolutions. In History of Scientific
Revolutions, volume 3rd, page 226. 1996.

[102] Victor A F Lamme and Pieter R Roelfsema. The distinct modes of vision
offered by feedforward and recurrent processing. Trends in neurosciences,
23(11):571–579, 2000.

[103] R Lattimore. The Odyssey of Homer. Harper Perennial Modern Classics, 1999.

[104] Steven M LaValle. Planning Algorithms. Methods, 2006:842, 2006.

[105] Steven M LaValle and James J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In 4th Workshop on Algorithmic and Computational
Robotics: New Directions, pages 293–308, 2000.

[106] Sang Ah Lee and Elizabeth S Spelke. Two systems of spatial representation
underlying navigation. Experimental brain research, 206(2):179–188, 2010.

[107] C G Lucas, A Gopnik, and T L Griffiths. Learning the form of causal relation-
ships using hierarchical Bayesian models. In Proceedings of the 32nd Annual
Conference of the Cognitive Science Society, 2010.

[108] C G Lucas and T L Griffiths. Developmental differences in learning the forms
of causal relationships. Cognitive Science, 34:113–147, 2010.

[109] Christopher G Lucas, Sophie Bridgers, Thomas L Griffiths, and Alison Gop-
nik. When children are better (or at least more open-minded) learners than
adults: Developmental differences in learning the forms of causal relationships.
Cognition, 131(2):284–299, 2014.

[110] Yuyan Luo, Lisa Kaufman, and Renée Baillargeon. Young infants’ reason-
ing about physical events involving inert and self-propelled objects. Cognitive
Psychology, 58:441–486, 2009.

[111] David Marr. Vision. book, 1982.

[112] David Marr and Tomaso Poggio. From understanding computation to under-
standing neural circuitry. AI Memo, 357:1–22, 1976.

229



[113] Elena Mascalzoni, Lucia Regolin, and Giorgio Vallortigara. Innate sensitivity
for self-propelled causal agency in newly hatched chicks. Proceedings of the
National Academy of Sciences of the United States of America, 107:4483–4485,
2010.

[114] James L. McClelland. Parallel distributed processing: Implications for cog-
nition and development. In Parallel Distributed Processing: Implications for
Psychology and Neurobiology, pages 8–45. 1989.

[115] James L. McClelland, Matthew M. Botvinick, David C. Noelle, David C. Plaut,
Timothy T. Rogers, Mark S. Seidenberg, and Linda B. Smith. Letting structure
emerge: Connectionist and dynamical systems approaches to cognition. Trends
in Cognitive Sciences, 14:348–356, 2010.

[116] James L Mcclelland and David E Rumelhart, editors. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, {V}olume 2:
{P}sychological and Biological Models. MIT Press, Cambridge, MA, 1986.

[117] JL McClelland. A connectionist perspective on knowledge and development. In
Developing cognitive competence: New approaches to process modeling, pages
157—-204. 1995.

[118] Joseph McIntyre, M Zago, A Berthoz, and F Lacquaniti. Does the brain model
Newton’s laws? Nature neuroscience, 4(7):693–694, 2001.

[119] A Michotte. The perception of causality, volume 6. 1963.

[120] R R Miller, R C Barnet, and N J Grahame. Assessment of the Rescorla-Wagner
model. Psychological bulletin, 117:363–386, 1995.

[121] T M Mitchell. Generalization as Search. Artificial Intelligence, (18):203–226,
1982.

[122] R Moreno-Bote, D C Knill, and A Pouget. Bayesian sampling in visual per-
ception. Proceedings of the National Academy of Sciences, 108:12491–12496,
2011.

[123] G L Murphy and D L Medin. The role of theories in conceptual coherence.
Psychological review, 92:289–316, 1985.

[124] Amy Needham and Renee Baillargeon. Intuitions about support in 4.5-month-
old infants. Cognition, 47(2):121–148, 1993.

230



[125] A Newell and H A Simon. Computer Science as Empirical Inquiry: Symbols
and Search. Communications of the ACM, 19:113–126, 1976.

[126] Allen Newell. Physical symbol systems. Cognitive Science, 4:135–183, 1980.

[127] J. Pearl. Causality. New York: Cambridge, 2000.

[128] Ann T. Phillips and Henry M. Wellman. Infants’ understanding of object-
directed action. Cognition, 98:137–155, 2005.

[129] Jean Piaget and Bärbel Inhelder. The psychology of the child. Basic Books,
1969.

[130] Steven T. Piantadosi, Joshua B. Tenenbaum, and Noah D. Goodman. Boot-
strapping in a language of thought: A formal model of numerical concept
learning. Cognition, 123:199–217, 2012.

[131] Lindsey J Powell and Elizabeth S Spelke. Preverbal infants expect members
of social groups to act alike. Proceedings of the National Academy of Sciences,
110:E3965–72, 2013.

[132] David Premack and Ann James Premack. Infants Attribute Value to the Goal-
Directed Actions of Self-propelled Objects, 1997.

[133] M L Puterman. Markov decision processes: Discrete stochastic dynamic pro-
gramming. John Wiley and Sons, Inc. New York, NY, USA, 1994.

[134] Hilary Putnam. Brains and Behaviour. In Readings in philosophy of psychology,
Volume 1, page 320. 1983.

[135] Lucia Regolin, Luca Tommasi, and Giorgio Vallortigara. Visual perception of
biological motion in newly hatched chicks as revealed by an imprinting proce-
dure. Animal Cognition, 3(1):53–60, 2000.

[136] R A Rescorla and A R Wagner. A theory of Pavlovian conditioning: Varia-
tions in the effectiveness of reinforcement and nonreinforcement. In Classical
Conditioning II Current Research and Theory, volume 21, pages 64–99. 1972.

[137] T T Rogers and J L McClelland. Semantic cognition: {A} parallel distributed
processing approach. MIT Press, Cambridge, MA, 2004.

[138] David E Rumelhart and James L McClelland. On learning the past tenses of
English verbs. 1985.

231



[139] David E Rumelhart, James L McClelland, and R J Williams. Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, volume 1.
1986.

[140] S Runeson, P Juslin, and H Olsson. Visual perception of dynamic proper-
ties: cue heuristics versus direct-perceptual competence. Psychological review,
107:525–555, 2000.

[141] S Russell and P Norvig. Artificial Intelligence: a modern approach. Prentice
Hall, 3rd edition, 2009.

[142] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach,
Third edition. 2014.

[143] M D Rutherford and Valerie A Kuhlmeier. Social Perception: Detection and
Interpretation of Animacy, Agency, and Intention. MIT Press, 2013.

[144] Adam N Sanborn, Vikash K Mansinghka, and Thomas L Griffiths. Reconciling
intuitive physics and Newtonian mechanics for colliding objects. Psychological
review, 120(2):411, 2013.

[145] Anne Schlottmann, Katy Cole, Rhianna Watts, and Marina White. Domain-
specific perceptual causality in children depends on the spatio-temporal con-
figuration, not motion onset. Frontiers in Psychology, 4, 2013.

[146] Anne Schlottmann, Elizabeth D. Ray, Anne Mitchell, and Nathalie Demetriou.
Perceived physical and social causality in animated motions: Spontaneous re-
ports and ratings. Acta Psychologica, 123:112–143, 2006.

[147] Brian J Scholl and Tao Gao. Percieving animacy and intentionality. In Social
perception: Detection and interpretation of animacy, agency, and intention.,
page 229. 2013.

[148] Brian J. Scholl and Patrice D. Tremoulet. Perceptual causality and animacy,
2000.

[149] J Schultz, K Friston, D M Wolpert, and C D Frith. Activation in posterior
superior temporal sulcus parallels parameter inducing the percept of animacy.
Neuron, 45:625–635, 2005.

[150] W Schultz, P Dayan, and P R Montague. A neural substrate of prediction and
reward. Science, 275(5306):1593–1599, 1997.

232



[151] L E Schulz. Finding new facts; thinking new thoughts, volume 42. Elsevier,
2012.

[152] Laura Schulz. The origins of inquiry: Inductive inference and exploration in
early childhood, 2012.

[153] Laura E Schulz and Elizabeth Baraff Bonawitz. Serious fun: preschoolers
engage in more exploratory play when evidence is confounded. Developmental
psychology, 43:1045–1050, 2007.

[154] Laura E. Schulz, Noah D. Goodman, Joshua B. Tenenbaum, and Adrianna C.
Jenkins. Going beyond the evidence: Abstract laws and preschoolers’ responses
to anomalous data. Cognition, 109:211–223, 2008.

[155] Laura E. Schulz, Alison Gopnik, and Clark Glymour. Preschool children learn
about causal structure from conditional interventions. Developmental Science,
10:322–332, 2007.

[156] T R Shultz. Cognitive Developmental Psychology. MIT Press., Cambridge,
MA, USA, 2003.

[157] Anna Shusterman, Sang Ah Lee, and Elizabeth S. Spelke. Cognitive effects of
language on human navigation. Cognition, 120:186–201, 2011.

[158] R S Siegler and Z Chen. Developmental differences in rule learning: a micro-
genetic analysis. Cognitive psychology, 36(3):273–310, aug 1998.

[159] R S Siegler and K Crowley. The micro genetic method. American Psychologist,
46:606–620, 1991.

[160] Francesca Simion, Lara Bardi, Elena Mascalzoni, and Lucia Regolin. 3 From
Motion Cues to Social Perception: Innate Predispositions. Social Perception:
Detection and Interpretation of Animacy, Agency, and Intention, page 37,
2013.

[161] Herbert A Simon. An information processing theory of intellectual develop-
ment. Monographs of the Society for Research in Child Development, pages
150–161, 1962.

[162] B.F. Skinner. Science and human behavior, volume 80. 1953.

[163] E Smith and D Medin. Categories and Concepts. Cambridge, MA: Harvard
University Press, 1981.

233



[164] Kevin A. Smith and Edward Vul. Sources of Uncertainty in Intuitive Physics.
Topics in Cognitive Science, 5:185–199, 2013.

[165] Beate Sodian, Deborah Zaitchik, and Susan Carey. Young Children’s Differen-
tiation of Hypothetical Beliefs from Evidence Development Young Children’s
Differentiation of Hypothetical Beliefs from Evidence. Child Development,
62:753–766, 2010.

[166] J C Spall. Introduction to stochastic search and optimization: {E}stimation,
simulation, and control. John Wiley and Sons, 2003.

[167] Elizabeth S Spelke, Grant Gutheil, and Gretchen Van de Walle. The devel-
opment of object perception. In (1995). Visual cognition: An invitation to
cognitive science, Vol. 2 (2nd ed.). An invitation to cognitive science, pages
297–330. 1995.

[168] Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge, 2007.

[169] Elizabeth S. Spelke and S Spelke. Principles of object perception. Cognitive
Science, 14:29–56, 1990.

[170] Dan Sperber. In defense of massive modularity. Language, brain and cognitive
development: Essays in honor of Jacques Mehler, 7:47–57, 2002.

[171] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction,
and Search. MIT Press, Cambridge, MA, USA, second edition, 2001.

[172] Andreas Stuhlmüller and Noah D Goodman. Reasoning about Reasoning by
Nested Conditioning: Modeling Theory of Mind with Probabilistic Programs.
Cognitive Systems Research, 2013.

[173] Rashmi Sundareswara and Paul R Schrater. Perceptual multistability predicted
by search model for Bayesian decisions. Journal of Vision, 8(5), 2008.
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