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We explore the hypothesis that many intuitive physical
inferences are based on a mental physics engine, analogous
in many ways to the machine physics engines used in build-
ing interactive video games. We describe the key features
of game physics engines along with their parallels in human
mental representation, focusing especially on the intuitive
physics of young infants where the hypothesis helps to unify
many classic and otherwise puzzling phenomena, and may
provide the basis for a computational account of how in-
fants’ physical knowledge develops. This hypothesis also
explains a number of “physics illusions”, and helps to in-
form the development of AI systems with more human-like
common sense.

Simulating Physics in a Mind and a Computer

Human perception cares about ‘what is where’, but also
‘where to’, ‘how’ and ’why’. We implicitly but continually rea-
son about the stability, strength, friction and weight of objects
around us, to predict how things might move, sag, push and
tumble as we act on them. As naive observers, people may be
most aware of the cases where we get these predictions wrong,
but for cognitive scientists seeking to understand how humans
interact so flexibly with everyday objects and with each other,
or for artificial intelligence (AI) researchers who want to build
human-like common sense in machines, what is most striking
is how right we are. Even young children have a remarkable ca-
pacity for intuitive physics, extending even to objects they are
encountering for the first time, yet we are still far from having
robots or other AI systems with the physical scene understand-
ing abilities of a human baby, let alone an adult.

Our goal in this paper is to suggest one route for closing
this gap, for explaining in engineering terms the core intuitive
physics that arises in young children and develops into adult-
hood, which could also support building these capacities in ma-
chines. We call this hypothesis the ”game engine in your head”:
Evolution could equip infants with something like the high-
level architecture used to interactively simulate the physics of
virtual worlds in modern video games (Fig. 1), and learning
physics would then consist of “programming” this architecture
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Figure 1: How game engines view the world. Everyday perception is not
just about the categorization of objects, but about their dynamic properties and
relations (A) Simple dynamic image, billiard balls colliding in a constrained
environment (B) Physics engine view of the billiard scene, parsing the world
into objects with physical properties, velocity vectors, and events such as col-
lisions (C) Prediction in a daily scene (D, top) Physics engine representation
includes static floor (orange), simplified bounding bodies, force vectors (red
arrow), sleeping and waking objects (dark and light green) (D, bottom) Sim-
ulating forward from initial conditions. The sleeping bodies wake up as the
collision moves through the tower.

to better capture the infant’s experiences observing and inter-
acting with objects and other physical entities. Compared to
other approaches to physical simulation, game physics engines
are optimized for efficiency on a limited subset of everyday
physics, and for producing results that look natural regardless
of their quantitative correspondence to physical reality. In-
tegrated with tools from probabilistic inference and machine
learning, game physics-style representations can explain how
people are able to make a wide range of intuitive physical judg-
ments quickly and robustly (Box 1), and to acquire many kinds
of physical knowledge from experience – including the physics
of the world we actually live in, but also possible worlds that
humans could experience.

In the following, we introduce the key features of game
physics engines that make them compelling models for the rep-
resentations of intuitive physics, with an emphasis on how these
features correspond to important distinctions and developmen-
tal milestones that have been discovered in the earliest emerg-
ing core intuitive physics of infants (Fig. 2). These infant find-
ings are fascinating but often puzzling, lacking a unifying ex-
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planation. Strikingly, game physics engines predict many of
these results, and perhaps can provide the missing integrative
theory for infant physics, while also being consistent with the
adult cognitive state and plausible learning mechanisms (Box
2). We also show how physics engine concepts can make sense
of several kinds of “physics illusions” that people are prone to,
as byproducts of the short cuts they make for efficient simula-
tion, and discuss how they are also being used and extended
by AI researchers to build more human-like physical reason-
ing and planning in machines. Finally, we briefly discuss ways
in which people’s intuitive physics may differ from or go be-
yond what game engines naturally represent (Box 3). We do not
mean to suggest that all the inner workings of physics engines
will have counterparts in the mind, or that people’s understand-
ing of all aspects of the physical world depends on a mental
physics engine. The parallels suggest, however, that the mental
physics engine hypothesis provides insights into diverse aspects
of human physical reasoning and especially its developmental
origins.

Major Physics Engine Concepts

Our proposal can be seen as one computational instantiation
of the classic view that intuitive physics is enabled by “runnable
mental models”: mental simulators that to a certain degree cap-
ture the causal mechanisms at work in the world [1], and can be
evolved forward to predict and reason about objects’ dynamics
mechanically and spatially [e.g. 2]. The extent to which human
intuitive physics in fact relies on something like a simulation
engine, and in what situations is the engine applied, are open
questions subject to ongoing debate [3, 4]. Here we will take
as a starting point that simulation provides a powerful mecha-
nism for at least some intuitive physical inferences, and present
game physics engines as a candidate computational substrate
for those simulations.

Mental models and mental simulation processes in intuitive
physics have often been seen as qualitative in nature, with a
mathematical basis that is fundamentally different from scien-
tific mechanics [5]. Recently, however, the notion of a mental
physics simulator that supports quantitative inferences has led
to strong computational models for a wide range of intuitive
physical judgments, physical scene understanding, and coun-
terfactual reasoning [e.g. 6, 7, 74, 9, 10, 11, and see Box 1].
These models combine advances in probabilistic reasoning in
AI with the exciting technological developments in physics en-
gines that have taken computer animation from block shapes
to blockbuster movies and games. The video game industry
in particular has developed tools for building rich, immersive
environments that must react convincingly and in real time to
the open-ended actions of players exploring them from a first-
person perspective.

We believe that these same tools provide a first working hy-
pothesis for the representational contents of intuitive physics:
the data structures that our minds use to represent the objects
and events that make up a scene, and the algorithms we use to
simulate physical dynamics over time.

There are several reasons why game physics engines may be
useful representations for cognitive scientists to explore. The
first is that game physics engines are programmed by humans,
for humans. Their functionality may thus provide hypotheses
for what passes as a “good enough” approximation to real-
world physics, as humans understand it. But we expect there
may be deeper analogs between the computational architecture
of physics engines in video games, and the mental architec-
ture that lets humans grasp and predict the immediate future of
physical scenes, because both of these systems evolved under
similar design constraints and pressures: Neither is required to
capture physics exactly or perfectly; both were designed to pro-
duce reasonable-looking dynamic approximations of complex
scenes on a human-relevant scale, in real time, with computa-
tional resources far too limited to implement anything like a
precise molecular simulation. Contrast this for example with
scientific physical simulations of galaxy formation, atomic sys-
tems, weather patterns, or protein folding. Such simulations
have been essential tools in scientific research, but in these set-
tings, simulations can draw on vast computational resources
and take much longer than real time; there is no reason to think
that their fundamental representations parallel any concepts we
expect to be relevant for everyday human cognition.

Crucially, while game physics engines share some of the
quantitative structure of Newtonian mechanics or classical fluid
mechanics, they also depart dramatically from these scientific
models, both in how they represent the world, and how they
are used to reason about the world. It is very unlikely that
the human mind solves the equations of motion that fully de-
scribe a complex dynamical scene, as physicists do when they
compute trajectories over long time intervals, such as the orbits
of the planets, or the arc of a cannonball. Game physics en-
gines do not carry out these computations either. Rather, they
use a combination of approximations to Newtonian mechanics
that are highly computationally efficient when run forward one
step at a time; hacks and shortcuts that have no scientific basis
but produce plausible dynamics very efficiently; and qualitative
switches between different approximation schemes at salient
points in space and time [12]. Indeed, for both game engines
and the brain’s simulations, the models don’t have to be accu-
rate in any sense that physicists would recognize; they just have
to produce results that look reasonable at the spatial scales that
humans perceive and act on, and predict well enough over a
short time interval of a second or two. To be useful, they have
to make these predictions fast – faster than real time. They have
to be flexible, to handle a very large number of situations, in-
cluding quite novel ones. And they have to run on low power
circuitry – a brain, or a smart phone.

To give a high-level example of how physics engine approx-
imations work, and the kinds of trade-offs they make, consider
different ways we could simulate the relatively simple scene
of several billiard balls moving and colliding in a closed space
(Figure 1A and B). One option is to create a simulation that is
veridical as possible, down to the molecular level. Such a sim-
ulation might be the most physically accurate, but it is far too
computationally-intensive for real-time applications. Another
option, pursued by many neural network models, is to treat the
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scene as a single high-dimensional vector in some latent rep-
resentational space [e.g. 13], undergoing a complex non-linear
evolution, and attempt to directly predict the next state of this
vector given the current one and past statistical regularities.

A physics engine represents a middle way between these ex-
tremes: instead of 1026 particles, or a single high-dimensional
vector, the engine explicitly divides the world into a relatively
small number of individuated objects that occupy space, with
properties that may be stable or changing in time (billiard ball,
table, wall, mass, friction, position, and so on). This factoriza-
tion into objects, just as in Newtonian mechanics, abstracts and
simplifies the scene to enable efficient computation. But the ac-
tual computations in physics engines hack Newtonian mechan-
ics in many ways. For instance, nearly all physics engines sep-
arate objects’ dynamics into free-motion and collision-solving
phases. As long as the objects are not colliding with other
objects or surfaces, they move roughly according to F = m ·
a, within constraints. A separate collision-detection module
spots when objects overlap, and switches their dynamics into a
collision-resolution mode. Often, this collision-detection mod-
ule does not take into account the specifics of the object’s shape,
and instead uses a simplifying bounding box to notice overlaps.
Furthermore, the simulation can usually assume that many en-
tities in the scene (such as walls, floors or background objects)
are not in motion, and thus require no moment-to-moment com-
putations to update their position.

In the rest of this section, we consider these and other
“physics engine hacks” in more detail, with a focus on how
they parallel core phenomena in perception and cognition, and
especially how they provide insight into the object and event
representations of young infants.

Objects and Events Two foundational representational com-
mitments of game physics engines are objects and events. Ob-
jects are bounded chunks of matter in space, events are delim-
iting points in time and the periods between them. For exam-
ple, in order to render a scene of several balls colliding, for
example, a physics engine explicitly represents these balls as
named entities with location and velocity, size and shape, mass
and elasticity, and so on. When the balls overlap in space, this
triggers a specific collision event in the physics engine, which
alters the dynamics of the objects (and see the segment on Colli-
sion Detection). This may seem such an obvious representation
that one can well ask how it could possibly be otherwise, but
recent work on building artificial systems with a sense of in-
tuitive physics has focused instead on representing a physical
scene as a vector of pixels, without an explicit notion of objects
or events [see 13, and see the Section on Intuitive Physics in AI,
Machine Learning, and the Brain].

According to several proposals, infants from early in their
development also see scenes as made up of objects and events
[e.g. 14, 15, 16, 17]. Infants group parts of a scene into holistic
entities based on their motion, and have certain physical expec-
tations about these entities: they should continue existing, not
suddenly change direction, not interpenetrate, and so on. In-
fants are also sensitive to subtle qualitative differences in the
events that describe the motion of these objects, distinguishing
between collision, occlusion, stability, containment, and so on.

Box 1. Physical Scene Understanding

The mental physics-engine hypothesis proposes that peo-
ple reason about physical scenes in the following way: First,
people reconstruct the visible scene internally, with some un-
certainty over the perceptual and physical properties of the ob-
jects (e.g. position, velocity, mass, and friction). This recon-
struction is similar to that of a software engineer who looks at
a tower of blocks on a table and re-creates an approximation
of the objects and dynamics on her computer’s physics engine.
People can mentally interact with this scene and simulate its
future state, repeatedly and with noisy Newtonian dynamics.
Such a mental simulation is similar to a set of repeated com-
puter simulations of a tower of blocks by a software engi-
neer, who can predict how a tower of blocks will fall if it is
bumped into, using her computer-simulated tower (see Figure
I). People can also compare the predictions of the simulation
with observations, and adjust their beliefs accordingly. Think
of an engineer who wrongly predicts a tower of blocks will
collapse when jostled because her computer simulation pre-
dicted a collapse, and who readjusts the physical parameters
(e.g. the mass of the blocks) of her simulation accordingly
(and see Figure 4).

Mental physics engines support a variety of predictions
across different tasks and types of reasoning, including pre-
dicting how a scene will unfold over time [6, 74], interacting
with a dynamic scene [75], reasoning about underlying phys-
ical properties [10, 11, 66], causal judgments [7], and quanti-
tative infant physical reasoning [9].
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Figure I. Predicting Stability. A mental physics engine model vs.
human judgment averages for judging the stability of towers. (A) A
physics engine simulates the dynamics of inferred towers (B) Each
point in the correlation graphs represents people’s stability judgments
for one tower (with SEM), and the three colored circles correspond
to the three towers shown on the left. Ground-truth physics (no
uncertainty) does not correspond to human judgments, but a noisy
physics simulation does. Adapted from [6].

Static and Dynamic A common way to save on computation
time and memory is to classify entities into those that actively
participate in the simulation (dynamic or active), and those that
do not (static or passive).

Static entities often form the background to a scene, such as
walls or the ground. Static structures are not just large-mass
objects, they form a separate ontological category, often with
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zero or undefined mass, for which forces and various other up-
dates are not calculated. Dynamic objects are not simply en-
tities currently in motion, but rather those with the potential
to be affected by forces. This basic distinction between static
and dynamic could also hold in mental physics engines, from
early in development and onwards, explaining how infants and
adults come to have different expectations about the physics of
static and dynamic entities, about the likely behavior of balls
vs. walls.

This distinction is in keeping with various findings, among
them the fact that extended surfaces are used early on in nav-
igation (while everyday objects are not), explained by the ex-
pectation that such extended surfaces are stable and unlikely
to move and therefore reliably indicate one’s position [18, 19].
This expectation of stability and immobility is also used for
body orientation, shown by the shift in posture and loss of bal-
ance in both adults and young children when perceiving a mov-
ing three-sided room [See 20, 21, and Figure 2A]. The viewers
in these experiments assume the walls of the room are static,
and incorrectly infer from their apparent motion that they them-
selves must be falling.

Beyond orientation and navigation, this distinction can ex-
plain certain object groupings and motion predictions, such as
why 3-month-old infants expect heterogeneous objects to be
grouped and moved together regardless of discontinuities in
color and shape, but do not group those objects with the stage
floor on which the objects stand. For example, infants who see
a hand lifting the top of an object made of two distinct parts ex-
pect the entire structure to rise regardless of the discontinuity,
but do not expect the floor to come with it [14]. They treat the
floor as an immovable, static background, whereas the object
itself is dynamic.

Sleeping and Awake Within the category of dynamic ob-
jects, physics engines treat objects at rest and objects in motion
differently. There is no need to calculate equations of motion
for objects that are not in motion. Also, there is usually no need
to re-render an object (i.e., re-draw fully its graphical counter-
part) if it did not move since the last frame. Objects in a state
of rest are labeled ‘sleeping’. A sleeping object wakes up if a
body collides with it, or if one of its supports (another object or
joint) is moved or destroyed. An awake object is put to sleep
if its velocity remains below some ε threshold over a period of
simulation steps S .

For mental physics engines, the concept of a ’sleeping’ object
can also reduce cognitive load on attention and computational
resource allocation. In a typical scene, most (non-agent) entities
are not moving at any given time, even though they can poten-
tially be moved given the right force application. The categor-
ical distinction between sleeping and waking entities can ac-
count for key findings in the psychology of causality. Consider
a rolling billiard ball A hitting a stationary ball B and sending
it rolling. People often see this event as A causing B to move,
rather than B causing A to stop or slow down [22, 23, 24]. In-
fants respond to reversals of such events as indicating a change
in causal roles [25]. From a purely Newtonian physics per-
spective, A and B are on equal footing. From a physics-engine
perspective, however, the order of events is as follows (Figure

2B):

1. Awake body A moving towards sleeping body B.
2. Collision detected.
3. The status of object B changes to ‘awake’.
4. Collision resolved, new velocities assigned.
5. Simulation resumes.
6. Optional: A‘s new velocity is below threshold ε. After

several simulation steps S , the engine sets the velocity of
A to 0 and puts it to sleep.

Step 2+3 indicate a change of state for B, and directly relate it
to A‘s contact with B. The change of state for A, if it happens,
occurs several simulation steps after the collision, and is not
directly related to the collision. This basic asymmetry in the
state change of the physics engine is in line with the apparent
causal asymmetry.

The sleep/wake divide can shed light on findings showing
piecemeal mechanical simulation in adults [2]. When asked to
predict the behavior of a mechanical system such as an arrange-
ment of gears or pulleys, adults often answer as though they
mentally animate pieces of the scene separately, propagating
effects through a causal chain rather than simulating the whole
scene holistically. Such a causal propagation can be seen in a
physics engine as the effect of one moving object waking up the
other objects it encounters through collision or force.

Beyond questions of causality and changes of state, the
sleep/wake divide is connected to the greater degree of attention
people pay to moving objects, and to the role played by motion
in the assignment of object boundaries. Presented with a sta-
tionary array of novel objects whose boundaries are not clear,
people who attempt to move things around will perceive two
things that move together as lying on the same object, whereas
two things that are too heavy to budge will continue to have
indeterminate status. These perceptions are shared by infants
in the first months of life [26, 27] and even newborns [28],
who use common states of motion - but not common states of
rest - as a cue for determining object grouping and boundaries
(Figure 2C). From a purely Newtonian perspective a stationary
center-occluded object is just as unitary as a uniformly mov-
ing one: both have the same motion vector above and below
the occluder. Not so from a physics-engine perspective, where
objects that are not in motion can be temporarily omitted from
the simulation. If, on top of predicting the motion of objects, a
mental physics engine is tasked with reconstructing object iden-
tities from perceptual data, it would save on computation and
memory to have as few moving items to track as possible. Two
nearby perceptual patches with identical velocity vectors would
be more efficiently characterized as one object.

Detecting and Resolving Collisions All game and physics
engines that move objects around must notice when those ob-
jects interact, and adjust their motion appropriately. These
computations are usually handled by a specialized collision-
detection module, though simulators use a variety of methods
to detect and solve collisions. To detect collisions, some sim-
ulators advance the simulation by a small step and create a list
of the overlapping bodies, while other simulators cast trajecto-
ries geometrically into the future and check for intersections.
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Figure 2: Experimental findings and computational proposals. (A) Adults and children expect a static structure such as a wall not to move, and its motion is
interpreted as self-motion, leading to needless correction and imbalance [20]. (B) In a physics engine, the resting body is in a sleep state to save on computation.
Following a collision, the body is woken up. (C) (i-iv) Young infants use motion, not continuation cues, to perceive connected objects behind an occluder. Green
and red marks indicate when infants perceived an occluded object as a unified body (adapted from [26]) (D) Game engines distinguish between the visual shape and
the related body of an object. The graphical shape is ultimately what is rendered on the screen, using e.g. polygon meshes and textures. The physical body is used
under-the-hood for quickly determining overlap and applying forces, making use of bounding boxes and convex hulls, for example (E) When 10-month-old infants
see a duck go behind an occluder and a truck comes out, they do not expect the duck to remain behind the occluder (i). This may be because the duck/truck body-
representation is similar (ii). (E) Young children have separate expectations for solids and non-solid substances [46, 47], predicting that non-cohesive substances
will go around solids, and through porous barriers, for example. Not all substances are the same. For example, sand (orange substance, left) may accumulate in
piles, while water (blue substance, right) spreads. A game engine can simulate non-solid substances with different dynamic properties (such as viscosity), to predict
different possible outcomes.
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To solve collisions, some simulators place springs between the
colliding objects, while others simply dictate changes to the ob-
ject positions (‘pushing’ them apart) until the objects no longer
intersect.

If mental physics engines exist, they will also need to detect
and solve collisions. As collision detection is a specific and
separate module in nearly all physics engines, we can expect to
find high sensitivity to collisions in humans, regardless of spe-
cific object identity. Young infants are particularly sensitive to
spatio-temporal boundaries in collision detection. They expect
solid objects not to inter-penetrate [15], reason about the loca-
tion, shape and compressibility of an object behind a rotating
screen to predict its collision with the screen [29], anticipate
that the size of a colliding object will affect how far an object is
displaced [30], and expect collisions with inert objects to result
by way of direct contact [31].

The mental physics-engine proposal posits that humans are
not perfect in their dynamic simulations for several reasons, in-
cluding perceptual uncertainty (e.g., where is the object), prop-
erty uncertainty (e.g., what is the object’s mass) and dynamic
uncertainty (e.g., the object’s momentum; the roughness of the
surface it moves on). A noiseless simulation with high fidelity
fails to capture people’s intuitions in physical reasoning tasks
[6, 32]. If collision detection is a separate module within the
mental physics engine, it likely acts as an independent source
of uncertainty. In line with this prediction, recent work suggests
collisions independently contribute to the noise in a mental sim-
ulation [74].

Body and Shape physics engines have separate data struc-
tures for the visual representation of an entity (shape) and the
physical representation of that entity (body). The shape of an
entity is ultimately rendered and displayed graphically, and it
can be made of polygon meshes, subdivision surfaces, and so
on. The body holds physical properties such as mass, position
and friction, and an approximation to its visual shape for the
purposes of calculating dynamics and collision detection. To
appreciate the difference between body and shape, think of two
rubber ducks colliding (as in Figure 2E). As a graphical repre-
sentation, the ducks can be captured with high fidelity by means
of a polygon mesh and textures, but for the purposes of quickly
checking and resolving overlaps, other representations such as
convex hulls, bounding boxes or other approximate shapes are
more appropriate.

When recognizing and categorizing an object people may
call on the more detailed shape representation, but when sim-
ulating an object moving forward in time, people might only
roughly approximate its shape by using simpler meshes or
solids. These separate representations may map onto the sep-
arate visual systems proposed by [33, 34], with the vision-for-
perception pathway being similar to the shape representation,
and the vision-for-action pathway being similar to the body rep-
resentation. The distinction between bodies and shapes seems
particularly illuminating of a set of findings in cognitive devel-
opment showing that infants below 12 months do not use de-
tailed shape representations to track object identity [e.g. 35, 36].

Box 2. Learning Physics

The mental physics-engine hypothesis is agnostic about
how the knowledge captured by this engine is acquired. Are
people innately equipped with a physics engine attuned to the
dynamics of our three-dimensional roughly Newtonian world,
with the right priors on gravity, friction, mass, and so on?
While it might be evolutionarily useful, such a fully specified
innate model is at odds with developmental findings, showing
that infants acquire many basic physical notions during the
first years of life [16, 76]. How could something like a men-
tal physics engine be learned over development, and to what
extent does the same mechanism continue to support learning
of new physical concepts and relations later in life?

It is possible that young children have or acquire early on
the most basic categories of a physics engine – that the world
is parceled into objects, that the dynamics of objects and their
interactions is governed by something like forces – but still
lack strong expectations about any of the specifics, such as the
existence of certain properties, the shape and structure of the
forces, the form of motion constraints, the prior distributions
over mass and friction, and so on. Under this view, children’s
developing knowledge of physics may be driven by becoming
more certain about these underlying dynamic variables.

For example, consider infants’ learning trajectory re-
garding support events [16]. Infants seem to initially expect
objects with any contact to a supporting base to remain sta-
tionary. Infants gradually become more sensitive to whether
the contact is at the top of the support, then to the amount of
contact, and finally to the shape of the object that determines
whether its center of mass is roughly over the supporting
base (see Figure II). This trajectory has been explained as the
acquisition of decision-rules over perceptual variables (rules
such as ‘if contact is less than mid-point, predict falling’ [17]).
But the same trajectory could be explained as the growth of
infants certainty concerning the existence and strength of dy-
namic variables such as joints that could attach the object
and support, random environmental forces, a global force like
gravity, and the object’s bounding body.
But the same trajectory could be explained as the growth of
infants certainty concerning the existence and strength of dy-
namic

Joint broken!

A B C D

Figure II. Learning About Support. Predicted trajectories for
different starting conditions and dynamic assumptions (A) Starting
conditions shown to infants, adapted from [16] (B) ‘Correct’
trajectories expected by infants from about 12.5 months onwards,
and by a physics engine with correct assumptions and bounding
bodies (dashed) (C) Representing bodies using their bounding box
(dashed) leads to the incorrect prediction that L-shaped objects will
be supported, as expected by infants younger than 12.5 months (D)
The expectation that there may be joints ’gluing’ objects together
leads to the incorrect prediction that precarious objects on top of a
support will stay put, and the correct prediction that objects on the
side will fall, in line with the expectations of 5-month old infants.
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In the seminal finding, infants see a toy duck and a toy truck
appear and disappear, in sequence, from behind the two sides
of a single wide occluder. The occluder is then removed to re-
veal either one or two objects (Figure 2E). One-year-old infants
are surprised by the absence of the second object, but younger
infants are not. Various controls establish that this failure is
not explained by limitations to attention, memory, or general
capacities to track objects over occlusion. For example, four-
month-old infants are surprised in the above situation if the two
distinct objects had moved into view from behind two narrow
occluders that were separated by a gap [37]. A great deal of
research has elaborated on these original findings, although no
single account currently unites all the findings (see [38] for a
review of the literature and a physics-based account of it).

When objects such as ducks and trucks are fully visible, in-
fants at 10 months can readily distinguish them perceptually.
But for tracking, infants at this age might rely on the body-
representation of an object, using similar shape approximations
for toy ducks, trucks and other comparable objects (Figure 2E).
Such a body-representation proposal is in line with the ‘struc-
tural layer’ proposal [38]. This proposal further predicts that
alternating between two shapes with wholly different bodies
(such as duck to long spiky snake) or different physical cate-
gories (such as rigid body to liquid or soft-body) would lead
to different tracking expectations than the duck-truck experi-
ment. In accordance with this last prediction, recent work [39]
has shown that young children under memory load notice tran-
sitions from rigid to non-rigid states (toy duck to goo) but not
similar-shaped rigid transitions (toy car to shoe).

Constraints A physics simulation will often use constraints
to restrict the movement of bodies without explicitly calculat-
ing forces of motion. Consider a two-bodied pulley system
with unequal weights at opposite ends: A physics engine can
avoid computing the exact tension on the rope necessary to sim-
ulate a force that pulls one mass up while the other goes down.
Rather, the engine can enforce a constraint such as ‘to the de-
gree that one object moves up, the other moves down’. Com-
mon constraints include keeping objects at a particular relative
distance (rod constraint), limiting their relative rotation (hinge
constraint), constricting objects to move along particular di-
mensions (planar constraint), or about a particular rotation axis
(axle constraints). A common use for constraints is as simple
object-to-object attachments, which ‘glue’ them together. Such
‘joints’ do not cause the two objects to form a single entity, and
the attachment can be broken if the engine detects a threshold
of stress or torque has been passed (and see Figure 5C for a
hypothetical use of such a joint in explaining infant reasoning
about support). Constraints can also be concatenated to create
things such as vehicle wheels, pulleys, and chains [12]. Such
constraints offer a way of integrating proposals from the field
of ‘qualitative physics’ [40] within quantitative mental simula-
tions.

Hard things, Soft Things, and Stuff Most physics engines
classify entities based on their ability to deform, distinguishing
between rigid bodies, soft bodies and fluids. Each category is
handled differently and requires a varying amount of resources.
Fluids and soft bodies are harder to simulate than rigid bodies,

and they take up more computation. From early in develop-
ment, humans also seem to have different expectations about
substances compared to objects, and about rigid objects com-
pared to flexible ones [41]. For example, infants do not track
piles of sand and flexible compounds in the same way as rigid
objects of otherwise similar appearance [42], although they are
able to detect changes to the volume of a liquid or non-solid
substance [43, 44].

Box 3. Limits of Mental Physics Engines

Early research on intuitive physics suggested that people’s
reasoning about object motion fails to accord with Newtonian
principles, and is subject to surprising errors, even on simple
motion prediction tasks [77, 78]. It was later shown that when
using more realistic displays and actions, people’s intuitions
actually closely match Newtonian dynamics [79, 80]. Simi-
larly, earlier work was taken to show that humans use simple
heuristics when making mass judgments from dynamic col-
lision events [e.g. 81, 82, 83], but these findings can be sub-
sumed by models based on noisy Newtonian dynamics [10].

Even if the domain in which people can richly simulate
physics in their minds turns out to be larger than some have
argued, this does not imply that mental simulation is the sole
underlying representation for all dynamic reasoning. Some
dynamic tasks can be solved quickly through qualitative rea-
soning without any quantitative simulation [40], and some dy-
namic tasks – such as those involving wheels and other spin-
ning objects – are difficult for humans to simulate [see for ex-
ample 54]. Even in inference tasks where physics engines can
be useful for evaluating candidate hypotheses or explanations,
there remains the difficult and separate problem of coming up
with the right hypotheses in the first place [84, 32, 85]. For
example, people can reasonably evaluate how well the exis-
tence and position of unseen attractors and repellers explain
the motion path of objects, but only if they are told this in-
formation explicitly. People have more difficulty coming up
with the correct hypothesis for the existence and positions of
attractors and repellers on their own.

Infants also expect liquids to pour through holes in barriers,
and to split and come together, whereas rigid objects should
not [45, 46]. Infants extend some of these expectations to non-
liquid, non-solid substances such as sand [47]. In many situ-
ations, however, infants fail to track non-solid substances over
occlusion [42]. Again, physics engines can provide an underly-
ing rationale for why infants find simple tracking of non-rigid
objects to be more difficult, because of the resource demands of
simulating the movements of liquids and soft bodies.

Physics engines can also provide a computational footing
when examining physical concepts within the categories of
solids and non-solid substances. For example, developmental
researchers have asked whether infants treat sand, water, and
honey as entirely separate concepts, as distinct sub-categories
of the non-solid substance concept, or as points in a single
space of possible non-solid substances varying in their proper-
ties [47]? Physics engines can use systems of particles to sim-
ulate the behavior of all these non-solid substances, by varying
particles’ dynamic properties and interaction forces (see Fig-
ure 2F), and in this sense they implement a single overarching
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space of possible non-solid substances. But they can also use
different approximations to maximize the efficiency and quality
of their simulations for different kinds of substances (and differ-
ent physics engines can simulate fluids using different approx-
imations); in this sense, they suggest it may be useful to repre-
sent distinct sub-types of non-solid substances. Also, many use-
ful expectations about the behaviors of rigid solids, soft solids,
and non-solid substances may emerge from a physics engine
representation without being explicit. For example, to know
that a liquid will form a large puddle when poured from two
nearby containers while sand will form two piles (Figure 2F),
a physics engine does not need to explicitly contain a ‘princi-
ple of accumulation’ that is specific to the sand concept [48].
Rather, the engine simply needs to run a simulation forward,
and examine the result. Such a fluid-simulation may also ex-
plain adult proficiency with predicting certain fluid dynamic
tasks [49].

By considering physics-engine object classes, we can also
propose new mental physics categories to examine in infancy.
For example Cloth, in the sense of an open mesh that can drape
other objects, is particularly difficult to simulate, but abounds
in everyday human environments. Cloth is a separate category
in most physics engines that are equipped to simulate it, distinct
from compressible bodies and fluids. Other entities include fog
and smoke, which share certain characteristics with fluids as
they can pass through some barriers, compress and split apart,
but are not as cohesive as liquids. Similar considerations apply
for more one-dimensional entities such as strings, bands, cords,
and hair.

Containment Our concept list so far has been one-
directional, from physics-engine software to possible mental
concepts. However, some categories uncovered by cognitive
scientists may be useful for engineers and software developers.
As an example, the notion of containment appears relatively
early in human development [50, 51]. This category is distinct
from visually-similar category of occlusion [52]. In both occlu-
sion and containment events a visible object is visually over-
taken by another object. But if the second object is moved, we
expect a contained object to go with it, and an occluded object
to stay put. Even young infants show these expectations, and
seem to further distinguish between loose-fitting containment
events and tight-fitting containment events.

If a ball is placed in a box and the box is moved, it may not
be worth the computational cost to simulate the ball’s motion
inside the box. It is sufficient to maintain a simple containment
relation, such that the ball’s position is linked and updated along
with the box’s position. Such a work-around can potentially be
of use for speeding up physics-engine software.

Physical Illusions

Physical illusions refer to persistent mistaken perceptions
in the domain of dynamic reasoning, that clash with people’s
higher-level belief about the ground truth. Much like visual il-
lusions, physics illusions offer a window into the simplified as-
sumptions made by the computational processes that underlie
perception. In particular, it is possible to explain at least some

of these illusions by referring to algorithms and assumptions of
a physics engine.

As a first example, consider the tall tower shown in the red
box of Figure 2B. Most participants agree that this tower is un-
stable and likely to fall down, while in fact it is stable. Even
when people accept as a fact that such formations are stable,
they may still ‘feel’ as though they should collapse imminently.
Such intuitions are the basis of an art form known as ‘rock bal-
ancing’ (and see also Figure 3A). These intuitions can be ex-
plained by the uncertainty involved in the reconstruction and
prediction process of a physics engine [6]. That is, the recon-
struction has some degree of uncertainty over the exact position
and properties of the objects in the scene. This noise is enough
to make the physics engine predict certain stable configuration
is in fact unstable, in line with people’s intuitions.

A B

C

Figure 3: Examples of Physical illusions. (A) Rock balancing creates
precarious-looking stable structures (B) Balance-toys are surprisingly sup-
ported (C) Roly-poly toys seem to lift themselves back up.

Next, consider the stability illusions that underpin popular
children’s toys, such as the balancing bird shown in Figure 3B
and the roly-poly toy in Figure 3C. We expect the bird to tip
over, but it stays balanced [53, 6]. We expect the roly-poly
to stay tipped over, but it springs back up. When accurately
recreated in a physics engine, such objects behave in line with
their real world counterparts. However, if we assume that a
physics engine creates a simplifying bounding box or convex
hull around the shape of a object (see Bodies and Shapes seg-
ment above), and makes the simplifying assumption that the
density of the box/hull is uniformly distributed, then the ob-
jects behave in line with incorrect psychological expectations.
For the roly-poly, the center-of-mass is incorrectly located away
from the bottom, causing the expectation that it will stay ly-
ing down. For the balancing bird, the center of mass is incor-
rectly located further away from the tip, causing the expectation
that it will tip over. Other physics-related illusions discussed as
possibly originating from simplifying physics-engine assump-
tions are the size-weight illusion [11] and the expectation that a
wheel rim will roll down an inclined plane at the same speed as
a disk [6, 54].
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Intuitive Physics in AI, Machine Learning

The need for common-sense reasoning about physical sys-
tems as a building-block of intelligence has a long history in
AI [see for example 55, 56, 5]. In part, this history stresses the
need for defining a dynamic problem in qualitative terms: peo-
ple know that water put in a heating kettle will boil over time,
and that pouring too much water in might cause the kettle to
overflow, even if they do not know exactly how and when this
boiling and overflow will happen. Similarly, the desired arti-
ficial intelligence was to reason over qualitative dynamics and
derivatives.

More recently, with the resurgence of artificial neural net-
works and connectionist architectures across many areas of ma-
chine learning [57], there has been a great deal of interest in try-
ing to capture dynamic reasoning with bottom-up approaches
that map directly from physical observations to motion predic-
tion or physical judgments. As an example, consider how the
Facebook PhysNet architecture tries to capture tower stability
judgments [58]. This feedfoward network was provided with
many thousands of still images of block towers, which were la-
beled according to those that did or did not fall under gravity
(similar to [6]). PhysNet was able to achieve super-human per-
formance in judging the stability of new towers. This result may
be useful for limited AI settings, but it belies that fact that the
network does not generalize well even to quite similar scenes
(for example, in judging towers composed of more blocks than
the training set), nor does it display asymmetries shown by both
humans and physics-engine based models [59]. Other networks
have been trained to predict the effects of forces from still im-
ages [60, 61], and as part of an unsupervised action-guiding
predictor of pixel-motion [62, 63] and physical properties [64].

While such networks can achieve success within their do-
main of training, and may provide a step towards artificial sys-
tems with common-sense reasoning, they nevertheless currently
lack key aspects of human reasoning that would allow them to
generalize flexibly across many different scenarios [65]. Net-
works such as PhysNet are not reasoning about blocks, mass,
friction and gravity; they are reasoning about pixels – abstract
patterns in how pixels change over time, but still, pixels. Unlike
representations based on explicit objects, relations and events,
these image-based representations may not easily extend what
has been learned to situations with more blocks, or objects of
different sizes and shapes, or the many different inferences hu-
man can make, such as predicting which way the blocks will
fall, or how many will wind up on the floor, reasoning about
which block made another fall over, or understanding how their
dynamics might differ if some objects were heavier, smoother
or bouncier. This certainly does not mean neural networks
have no role to play in intuitive physics. Several groups have
recently explored productive ways to combine deep networks
with physics-engine based models, such as using physics en-
gines for explicitly simulating the scene’s dynamics but vision
algorithms based on deep networks as a fast bottom-up ini-
tialization of the simulation’s state [see for example 66, and
Figure 4], or using neural networks to learn the dynamics of
forces in a physics-engine-like model that explicitly factorizes

Figure 4: Inferring Physical Parameters. From top left: the Galileo sys-
tem assumes a distribution over physical properties such as mass, and shape.
In the forward direction, the system generates objects in space, and simulates
their trajectory using a game engine. The simulated trajectory is compared to
a real trajectory of objects in motion (bottom left), resulting in a likelihood
for the simulated trajectory. The physical parameters are adjusted to maximize
this likelihood, and better match observation . In parallel, a neural network is
trained to predict the physical properties of objects, given their visual appear-
ance (right). The prediction of the network is used as the initial ’guess’ for the
physical parameters of the game engine, speeding up inference. For full details
see [66].

into representations of individual objects, their properties and
interactions [67, 68, 69].

A Physics Engine in the Brain?

What are the neural substrates of the mental physics engine?
Do they form a specific sub-module in cortical processing, or
are they part of a broader network? To date, there have been
few studies looking directly at the neural signatures of intu-
itive physical perception and prediction, with research focusing
more on the neural representation of explicit textbook physi-
cal concepts such as momentum [70], or the brain mechanisms
involved in parsing mechanical reasoning puzzles and educa-
tional videos of textbook concepts [71]. One recent study has
explored the neural basis of more perceptual physical infer-
ences, similar to those used in studies of infants, with a suite
of visual scene understanding tasks such as predicting the sta-
bility of towers, or predicting the immediate future of simple
physical interactions in 2D displays. These tasks were found to
preferentially engage a brain network of parietal and premotor
regions, apparently overlapping with regions related to action
planning and tool use [72]. This finding is in line with previ-
ous work showing that visual information about the weight of
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objects, a key dynamical variable in intuitive physics and game
engine simulations, can lead to activation in premotor cortex
[73]. An additional experiment in [72] found that the amount of
physical content in a video during passive viewing predicts the
activation of the brain regions identified as candidate physics-
related areas. These results suggest that brain regions relevant
for processing intuitive physical inferences are involved in both
the perception of scenes and objects, and in action planning
and understanding. But these experiments also focused on only
a small set of physical inferences, specifically about rigid bod-
ies, and there are still many open questions regarding the neural
realization of a mental physics engine.

Concluding Remarks

People do more than classify objects: They see bodies with
physical properties, interacting through a play of dynamic
forces against a background of inert extended surfaces. Things
can be heavy, firm, billowing, fragile, cushy, bouncy. They can
fall and smash and blow and drag and flit and anchor. Stuff can
ooze and splash and dribble and billow. Because the human
mind has to overcome resource challenges when constructing
and reconstructing dynamic scenes, we might expect a con-
vergent evolution of concepts between faculties of the mind
and simulation software. Taking the mental physics simulation
proposal seriously means we should examine the concepts and
workarounds that clever people working on game engines de-
velop and use to get their models to work efficiently: concepts
whose effectiveness depends both on the nature of the physi-
cal world, and on human psychology, but that were developed
independently of findings or theories in cognitive psychology.
In particular, we should look for those concepts that are shared
across many physics engines, regardless of specific implemen-
tation details. We examined several such prominent concepts
and their design principles, finding new points of inspiration,
new perspectives on old phenomena in psychology, and new
hypotheses for how intuitive physics might work in the brain
and be built into intelligent machines.
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