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Abstract
We present an algorithmic model for the development of chil-
dren’s intuitive theories within a hierarchical Bayesian frame-
work, where theories are described as sets of logical laws
generated by a probabilistic context-free grammar. Our algo-
rithm performs stochastic search at two levels of abstraction
– an outer loop in the space of theories, and an inner loop in
the space of explanations or models generated by each the-
ory given a particular dataset – in order to discover the theory
that best explains the observed data. We show that this model
is capable of learning correct theories in several everyday do-
mains, and discuss the dynamics of learning in the context of
children’s cognitive development.

Introduction
As children learn about the world, they learn more than just
a large stock of specific facts. They organize their knowl-
edge into abstract coherent frameworks, or intuitive theo-
ries, that guide inference and learning within particular do-
mains (Carey, 1985; Wellman & Gelman, 1992). Much re-
cent work in computational cognitive modeling has attempted
to formalize how intuitive theories are structured, used and
acquired from experience (Tenenbaum, Griffiths, & Kemp,
2006), working broadly within a hierarchical Bayesian frame-
work shown in Figure 1 (and explained in more detail below).
While this program has made progress in certain respects, it
has treated the problem of theory acquisition only in a very
ideal sense. The child is assumed to have a hypothesis space
of possible theories constrained by some “Universal Theory”,
and to be able to consider all possible theories in that space, in
light of a given body of evidence. Given sufficient evidence,
and a suitably constrained hypothesis space of theories, it has
been shown that an ideal Bayesian learner can identify the
correct theory underlying core domains of knowledge such as
causality (Goodman, Ullman, & Tenenbaum, 2009), kinship
and other social structures (Kemp, Goodman, & Tenenbaum,
2008). These Bayesian computational analyses have not to
date been complemented by working algorithmic models of
the search process by which a child can build up an abstract
theory, piece by piece, generalizing from experience. Here
we describe such an algorithmic model for Bayesian theory
acquisition. We show that our algorithm is capable of con-
structing correct if highly simplified theories for several ev-
eryday domains, and we explore the dynamics of its behavior
– how theories can change as the learner’s search process un-
folds as well as in response to the quantity and quality of the
learner’s observations.

At first glance, the dynamics of theory acquisition in child-
hood look nothing like the ideal learning analsyes of hierar-
chical Bayesian models – and may not even look particularly

rational or algorithmic. Different children see different ran-
dom fragments of evidence and make their way to adult-like
intuitive theories at different paces and along different paths.
It seems unlikely that children can simultaneously evaluate
many candidate theories at once; on the contrary, they appear
to hold just one theory in mind at any time. Transitions be-
tween theories appear to be local, myopic, and semi-random,
rather than systematic explorations of the hypothesis space.
They are prone to backtracking or “two steps forward, one
step back”. We suggest that these dynamics are indicative
of a stochastic search process, much like the Markov chain
Monte Carlo (MCMC) methods that have been proposed for
performing approximate probabilistic inference in complex
generative models. We show how a search-based learning al-
gorithm can begin with little or no knowledge of a domain,
and discover the underlying structure that best organizes it
by generating new hypotheses and checking them against its
current conceptions of the world using a hiearchical Bayesian
framework. New hypotheses are accepted probabilistically if
they can better account for the observed data, or if they com-
press it in some way. Such a search-based learning algorithm
is capable of exploring a potentially infinite space of theories,
but given enough time and sufficient data it tends to converge
on the correct theory – or at least some approximation thereof,
corresponding to a small set of abstract predicates and laws.

The plan of the paper is as follows. We first introduce our
framework for representing and evaluating theories, based
on first-order logic and Bayesian inference in a hierarchi-
cal probabilistic model that specifies how the theory’s logical
structure constrains the data observed by a learner. We then
describe our algorithmic approach to theory learning based
on MCMC search, using simulated annealing to aid conver-
gence. Finally we study the search algorithm’s behavior on
two case studies of theory learning in everyday cognitive do-
mains: the taxonomic organization of object categories and
properties, and a simplified version of magnetism.

Formal framework
We work with the hierarchical probabilistic model shown in
Figure 1, based on those in (Katz, Goodman, Kersting, Kemp,
& Tenenbaum, 2008; Kemp et al., 2008). We assume that a
domain of cognition is given, comprised of one or more sys-
tems, each of which gives rise to some observed data. The
learner’s task is to build a theory of the domain: a set of
abstract concepts and explanatory laws that together gener-
ate a hypothesis space and prior probability distribution over
candidate models for systems in that domain. The laws and
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Figure 1: A hierarchical Bayesian framework for theory acquisition

concepts are written in logical form, a “language of thought”,
typically a subset of first-order logic. The learner’s model of a
system specifies what is true of that system, and thereby gen-
erates a probability distribution over possible observations
that can be made for that system.

For example, consider a child learning about the domain
of magnetism. She might begin by playing with a few pieces
of metal and notice that some of the objects interact, exerting
strange pulling or pushing forces on each other. She could
describe the data directly, as “Object i interacts with object
f”, “Object i interacts with object j”, and so on. Or she could
form a simple theory, in terms of abstract concepts such as
magnet, magnetic object and non-magnetic object, and laws
such as “Magnets interact with other magnets”, “Magnets
interact with magnetic objects”, and “Interactions are sym-
metric” (but no other interactions take place). Systems in this
domain correspond to specific subsets of objects, such as the
set of objects {a, . . . , i} in Figure 1. A model of a system spec-
ifies the minimal facts needed to apply the abstract theory to
the system, in this case which objects are magnetic, which are
magnets, and which are non-magnetic. From these core facts
the laws of the theory determine all other true facts – in our
example, this means all the pairwise interactions between the
objects: e.g., objects i and j, being magnets, should interact,
but i and e should not, because e is non-magnetic. Finally, the
true facts generate the actual data observed by the learner via
a noisy observation process.

While the abstract concepts in this simplified magnetism
theory are attributes of objects, more complex relations are
possible. Consider for example a domain of taxonomy, as
in Collins and Quillian’s classic model of semantic memory
as an inheritance hierarchy (Collins & Quillian, 1969). Here
the abstract concepts are is a relations between categories and
has a relations between categories and properties. The theory
underlying taxonomy has two basic laws: “The has a relation

inherits down is a relations” and “The is a relation is transi-
tive” (laws 3 and 4 on the right side of Figure 1). A system
consists of a specific set of categories and properties, such as
salmon, eagle, breathes, can fly, and so on. A model specifies
the minimal is a and has a relations, typically corresponding
to a tree of is a relations between categories with properties
attached by has a relations at the broadest category they hold
for: e.g., “A canary is a bird”, “A bird is an animal”, “An an-
imal can breathe”, and so on. The laws then determine that
properties inherit down chains of is a relations to generate
many other true facts that can potentially be observed, e.g.,
“A canary can breathe”.

Equipped with this hierarchical generative model, a learner
can work backwards from observed data to multiple levels of
latent structure. Given the correct theory, the learner can infer
the most likely model underlying a set of noisy, sparse obser-
vations and predict facts that have not been directly observed
(Katz et al., 2008; Kemp et al., 2008). If the true theory is
unknown, the learner can consider a hypothesis space of can-
didate theories, generated by higher-level “Universal Theory
(UT )” knowledge. UT defines a distribution over the space
of possible theories, P(T |UT ), which can then be used by a
learner to infer the correct theory describing a domain, ac-
cording to the standard Bayesian formulation:

P(T |D,UT ) ∝ P(D|T )P(T |UT ) (1)

Bayes’ rule here captures the intuition of Occam’s razor. The
theory that best explains the data, or has highest posterior
probability P(T |D,UT ), should be based on two considera-
tions: how well the theory fits the data, as measured by the
likelihood P(D|T ), and how simple or short is the theory, as
measured by the prior P(T |UT ). We now define these hy-
pothesis spaces and probabilities more formally, and then de-
scribe a learning algorithm that searches the space of theories
by proposing small random changes to the current theory and
accepting changes stochastically based on whether they are
likely to lead to higher overall probability.

A language for theories. Following (Katz et al., 2008) we
represent the laws in a theory as Horn clauses: logical expres-
sions of the form t ← (p∧ q∧ ...∧ r). Horn clauses express
logical implications – a set of conjunctive conditions under
which t holds – but can also capture intuitive causal relations
under the assumption that any propositions not generated by
the theory are assumed to be false. In our formulation, the
clauses contain two kinds of predicates: “core” and “surface”.
Core predicates are a minimal set of predicates that determine
all other predicates when combined with the theory’s laws.
Surface predicates are derived from other predicates, either
surface or core, via the laws. Predicates may or may not be
directly observable in the data. The core predicates can be
seen as compressing the full model into just the minimal bits
necessary to specify all true facts. In the magnetism example
above, the core could be expressed in terms of two predicates
p(X) and q(X). Based on an assignment of truth values to
these core predicates, the



Top level theory
(S1) S ⇒ (Law) ∧ S
(S2) S ⇒ (Tem) ∧ S
(S3) S ⇒ Stop

Random law generation
(Law) Law ⇒ (Ple f t ← Pright ∧ Add)
(Add1) A ⇒ P ∧ Add
(Add2) A ⇒ Stop

Predicate generation
(Ple f t1) Ple f t ⇒ sur f ace1()
...
(Ple f t α) Ple f t ⇒ sur f aceα()
(Pright1) Pright ⇒ sur f ace1()
...
(Pright α) Pright ⇒ sur f aceα()
(Pright (α+1)) Pright ⇒ core1()
...
(Pright (α+β)) Pright ⇒ coreβ()

Law templates
(Tem1) Tem ⇒ template1()
...
(Temγ) Tem ⇒ templateγ()

Figure 2: Production rules of the Probabilistic Horn Clause Gram-
mar. S is the start symbol and Law, Add, P and Tem are non-
terminals. α, β, and γ are the numbers of surface predicates, core
predicates, and law templates, respectively.

learner can use the theory’s laws such as
interacts(X,Y)← p(X)∧q(Y) to derive values for the
observable surface predicate interacts(X,Y). Notice that
p(X) and q(X) are abstract predicates, which acquire their
meaning as concepts picking out magnets or magnetic objects
respectively in virtue of the role they play in the theory’s
laws. In constructing such a theory the learner essentially
creates new concepts (Carey, 1985). Entities may be typed
and predicates restricted based on type constraints: e.g., in
taxonomy, has a(X,Y) requires that X be a category and Y
be a property, while is a(X,Y) requires that X and Y both be
categories. Forcing candidate models and theories to respect
these type constraints provides the learner with a valuable
and cognitively natural inductive bias.

The theory prior P(T |UT ). We posit UT knowledge in
the form of a probabilistic context-free Horn clause grammar
(PHCG) that generates the hypothesis space of possible Horn-
clause theories, and a prior P(T |UT ) over this space (Figure
2). This grammar and the Monte Carlo algorithms we use to
sample or search over the theory posterior P(T |D,UT ) are
based heavily on Goodman, Tenenbaum, Feldman, and Grif-
fiths (2008), who introduced the approach for learning single
rule-based concepts rather than the larger theory structures we
consider here. We refer readers to Goodman et al. (2008) for
many technical details. Given a set of possible predicates in
the domain, the PHCG draws laws from a random construc-
tion process (Law) or from law templates (Tem; explained
in detail below) until the Stop symbol is reached, and then
grounds out these laws as horn clauses. The prior p(T |UT ) is

P(X,Y) ← P(X,Z)∧P(Z,Y)
P(X,Y) ← P(Z,X)∧P(Z,Y)
P(X,Y) ← P(X,Z)∧P(Y,Z)
P(X,Y) ← P(Z,X)∧P(Y,Z)
P(X,Y) ← P(X,Y)∧P(X)
P(X,Y) ← P(Y,X)∧P(X)
P(X,Y) ← P(X,Y)∧P(Y)
P(X,Y) ← P(Y,X)∧P(Y)

P(X,Y) ← P(X)∧P(Y)
P(X,Y) ← P(Y,X)
P(X,Y) ← P(X,Y)
P(X) ← P(X)
P(X) ← P(X,Y)∧P(X)
P(X) ← P(Y,X)∧P(X)
P(X) ← P(X,Y)∧P(Y)
P(X) ← P(Y,X)∧P(Y)

Figure 3: The list of templates available to in the PHCG.

the product of the probabilities of choices made at each point
in this derivation. All these probabilities are less than one, so
overall the prior favors simpler theories with shorter deriva-
tions. The precise probabilities of different rules in the gram-
mar are treated as latent variables and integrated out, favoring
re-use of the same predicates and law components within a
theory (Goodman et al., 2008).

Law templates. We make the grammar more likely to gen-
erate useful laws by equipping it with templates, or canonical
forms of laws that capture structure likely to be shared across
many domains. While it is possible for the PHCG to reach
each of these law forms without the use of templates, their
inclusion allows the most useful laws to be invented more
readily. They can also serve as the basis for transfer learn-
ing across domains. For instance, instead of having to re-
invent transitivity anew in every domain with some specific
transitive predicates, a learner could recognize that the same
transitivity template applies in several domains. It may be
costly to invent transitivity for the first time, but once found
– and appreciated! – its abstract form can be readily re-
used. The specific law templates used are described in Figure
3. Each “P(·)” symbol stands for a non-terminal represent-
ing a predicate of a certain -arity. This non-terminal is later
instantiated by a specific predicate. For example, the tem-
plate P(X,Y)← P(X,Z)∧P(Z,Y) might be instantiated as
is a(X,Y)← is a(X,Z)∧ is a(Z,Y) (a familiar transitive law)
or as has a(X,Y)← is a(X,Z)∧has a(Z,Y) (the other key
law of taxonomy, stating that “has a is transitive over is a”).

The theory likelihood P(D|T ). An abstract theory makes
predictions about the observed data in a domain only indi-
rectly, via the models it generates. A theory typically gen-
erates many possible models: even if a child has the correct
theory and abstract concepts of magnetism, she could catego-
rize a specific set of metal bars in many different ways, each
of which would predict different interactions that could be
observed as data. Expanding the theory likelihood,

P(D|T ) = ∑
M

P(D|M)P(M|T ) (2)

we see that theory T predicts data D well if it assigns high
prior P(M|T ) to models M that make the data probable under
the observation process P(D|M).

The model prior P(M|T ) reflects the intuition that a the-
ory T explains some data well if T requires few additional
degrees of freedom beyond its abstract concepts and laws
to make its predictions. That is, few specific and contin-
gent facts about the system under observation are required



in addition to the theory’s general prescriptions. This intu-
ition is captured by a prior that encourages the core predi-
cates to be as sparse as possible, penalizing theories that can
only fit well by “overfitting” with many extra degrees of free-
dom. Formally, following (Katz et al., 2008), we model all
values of the core predicates as independent Bernoulli ran-
dom variables with conjugate beta priors encouraging most
variables to have the same value (on or off). We assume that
any proposition potentially in the model M is false unless it is
a core predicate turned on by this Bernoulli process or is de-
rived from the core predicates through the theory’s laws (the
minimal model assumption of logic programming).

Finally, the model likelihood P(D|M,T ) comes from as-
suming that we are observing randomly sampled true facts
(sampled with replacement, so the same fact could observed
on multiple occasions), which also encourages the model ex-
tension to be as small as possible.

Stochastic search in theory space: a grammar-based
Monte-Carlo algorithm. Following Goodman et al. (2008),
we use a grammar-based Metropolis-Hastings (MH) al-
gorithm to sample theories from the posterior distribution
over theories conditioned on data, P(T |D,UT ). This algo-
rithm is applicable to any grammatically structured theory
space, such as the one generated by our PHCG. The MH
algorithm proceeds by randomly proposing changes to the
current theory, and accepting or rejecting these changes.
Each proposed change to the current theory corresponds
to choosing a grammatical constituent of the theory then
regenerating it from the PHCG. For example, if our theory of
magnetism includes the law interacts(X,Y)← p(X)∧q(Y),
the MH procedure might propose to add or delete a
predicate (e.g., interacts(X,Y)← p(X)∧q(Y)∧p(Y)
or interacts(X,Y)← p(X)), to change one pred-
icate to an alternative of the same form (e.g.,
interacts(X,Y)← p(X)∧p(Y)) or a different form
if available (e.g., interacts(X,Y)← p(X)∧ r(X,Y));
to resample the law from a template (e.g.,
interacts(X,Y)← r(X,Z)∧ r(Z,Y)); or to add or delete
a whole law.

These proposals are accepted with probability equal to the
minimum of 1 and the MH acceptance ratio,

P(T ′|D,UT )
P(T |D,UT )

· Q(T |T ′)
Q(T ′|T )

(3)

where T is the current theory, T ′ is the new proposed the-
ory, and Q(·|·) is the transition probability from one theory
to the other, derived from the PHCG (Goodman et al., 2008).
To aid convergence we raise the posterior ratio to a power
greater than 1, which we increase very slightly after each MH
step in a form of simulated annealing. The learner initially
explores alternative theories freely, but with time becomes in-
creasingly likely to reject theory changes unless they lead to
an improved posterior probability.

While this MH algorithm could be viewed merely as a way
to approximate the calculations necessary for a hierarchical

Bayesian analysis, we suggest that it could also capture in a
schematic form the dynamic processes of theory acquisition
and change in young children. Stochastic proposals to add a
new law or change a predicate within an existing law are con-
sistent with some previous characterizations of children’s the-
ory learning dynamics (Siegler & Chen, 1998). These dynam-
ics were previously proposed on purely descriptive grounds,
but here they emerge as a consequence of a rational learning
algorithm for effectively searching an infinite space of logical
theories.

Approximating the theory score. Computing the theory
likelihood P(D|T ), necessary to compare alternative theories
in Equation 3, requires a summation over all possible mod-
els consistent with the current theory (Equation 2). Because
this sum is typically very hard to evaluate exactly, we ap-
proximate P(D|T ) with P(D|M∗)P(M∗|T ), where M∗ is an
estimate of the maximum a-posteriori (MAP) model inferred
from the data: the most likely values of the core predicates.
The MAP estimate M* is obtained by running a Gibbs sam-
pler over the values of the core predicates, as in (Katz et al.,
2008), annealing slightly on each Gibbs sweep to speed con-
vergence and lock in the best solution. The Gibbs sampler
over models generated by a given theory is thus an “inner
loop” of sampling in our learning algorithm, operating within
each step of an “outer loop” sampling at a higher level of ab-
stract knowledge, the MH sampler over theories generated by
UT knowledge.

Case Studies
We now explore the performance of this stochastic approach
to theory learning in two case studies, using simulated data
from the domains of taxonomy and magnetism introduced
above. We examine the learning dynamics in each domain
and make more explicit the possible parallels with human the-
ory acquisition.

Taxonomy
Katz et al. (2008) defined a similar hierarchical Bayesian
framework and showed that a theory of taxonomic reason-
ing about properties and categories in an inheritance hierar-
chy could be correctly selected from among several alterna-
tives, on the basis of data. However, they did not address the
harder challenge of constructing the theory from the ground
up, or selecting it from an effectively infinite hypothesis space
of theories (which could be used to describe many other do-
mains). That is our goal here. Following Katz et al. (2008),
we take the correct theory to have two unobservable core
predicates, g(X,Y) and f(X,Y), and two observable surface
predicates, is a(X,Y) and has a(X,Y). There are four laws:

Law 1: has a(X,Y)← f(X,Y)
Law 2: is a(X,Y)← g(X,Y)
Law 3: has a(X,Y)← is a(X,Z)∧has a(Z,Y)
Law 4: is a(X,Y)← is a(X,Z)∧ is a(Z,Y)

Laws 1 and 2 set up the core predicates to represent the mini-
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Figure 4: Log posterior score for representative runs of theory learn-
ing in Taxonomy. Dashed lines show different runs. Solid line is the
average across all runs. Node 1 marks the acquisition of law 3, node
2 marks the acquisition of law 4.

mal is a and has a links, on top of which are defined the laws
of property inheritance (Law 3) and transitive category mem-
bership (Law 4). We take laws 1 and 2 as given, assuming
the structure and meaning of the core predicates as Katz et al.
did, and ask whether a learner can successfully construct laws
3 and 4. Following Katz et al., we consider a concrete domain
with 7 categories and 7 properties in a balanced taxonomy, as
shown in Figure 1. Observations include all positive facts as-
serting that a property is true of a category, as in “An eagle has
claws”. (The data used for this section and the following case
study can be found at http://web.mit.edu/tomeru/www/tlss.)
We ran 10 simulations for 1300 iterations of the outer MH
loop. Learning curves for representative runs as well as the
average over all runs are shown in Figure 4. Out of 10 simu-
lations, 8 found the correct theory within the given number of
iterations, and 2 discovered a partial theory which included
only law 3 (property inheritance). Several observations are
worth noting.

Abstract learning is possible. Using only stochastic local
search moves, a learner can navigate the space of potential
theories to discover the laws underlying the domain. Even a
relatively small dataset (with 7 categories and 7 properties) is
sufficient to learn the correct abstract domain theory.

Individual learning curves show sudden changes and high
variability in what is learned when, while on average learn-
ing is smooth and follows a characteristic timecourse. The
learning algorithm’s local dynamics are highly stochastic and
variable across runs, because of the randomness in what the-
ory changes are proposed when, and the fact that a small the-
ory change can make a big difference in predictive power. Yet
there is still a meaningful sense in which we can talk about
“typical” learning behavior, even though any one learner may
not look much like this average. If stochastic local search is
a key component in children’s theory construction, it could
explain why cognitive development shows this same dual
nature: systematic and graded progression at the popula-
tion level, despite random, discontinuous and highly variable
learning rates in any one child.

Although proposals are random, there is a systematic and
rational order to learning. While there are many routes

through theory space to a given endpoint, a sequence of ran-
dom MH proposals may still prefer some orders of knowl-
edge acquisition over others. Here, when law 4 is discovered
(on 8/10 runs), it is always acquired after law 3. This is be-
cause law 4 (transitivity of category membership) provides
much more explanatory power – and hence is more stable
under our stochastic theory-learning dynamics – given law 3
(property inheritance) and a reasonable domain model spec-
ifying which properties hold for which categories. This or-
der is also consistent with the order of acquisition in human
cognitive development (Wellman & Gelman, 1992): children
learn to generalize properties of biological categories to in-
stances well before they learn that categories can be arranged
in a multilevel hierarchy supporting transitive inferences of
category membership.

Magnetism
After showing that stochastic search can learn the correct laws
in a domain theory, we now consider a second case study in
which the acquisition of new laws corresponds to a shift in
the meaning of the core predicates, and new (i.e., previously
unassigned) core predicates are introduced during learning –
akin to some of the conceptual changes described by Carey
(1985). Our domain here is the simple version of mag-
netism described above, with two unobservable core predi-
cates: p(X) and q(X), and one observable surface predicate:
interacts(X,Y). There are three laws:

Law 1: interacts(X,Y)← p(X)∧p(Y)
Law 2: interacts(X,Y)← p(X)∧q(Y)
Law 3: interacts(X,Y)← interacts(Y,X)

We consider a concrete system with 3 magnets, 5 magnetic
objects and 2 non-magnetic objects. These concepts are ini-
tially unknown to the learner. The core predicates p(X) and
q(X) are completely abstract and initially uninterpreted. They
will acquire their meaning as concepts picking out magnets
and magnetic objects respectively in virtue of the role they
play in the theory’s laws, specifying that objects in one sub-
set (the p’s) interact with each other and with objects in a
second set (the q’s), but q’s do not interact with each other.
In constructing a theory, the learner introduces these abstract
predicates via new laws, or new roles in existing laws, and
thereby essentially creates these concepts where she did not
have them before (Carey, 1985).

We ran 10 simulations for 1600 iterations of the outer MH
loop. Representative runs are displayed in Figure 5, as well as
the average over all the runs. The results were similar to the
taxonomy case study in several respects, which we also ex-
pect to hold for a variety of other domains. The correct theory
was usually learned, with some variation: 9/10 simulations
found the correct theory or a variant of it, and one discov-
ered a partial theory containing only law 1. Only some runs
learned the exact form of law 3, asserting that interactions
are symmetric. Others found variants that were extension-
ally equivalent to symmetry in this domain, but slightly more
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Figure 5: Representative runs of theory learning in Magnetism.
Dashed lines show different runs. Solid line is the average across
all runs. Node 1 marks the acquisition of law 1 and the confounding
of magnets with magnetic objects. Lower right panel zooms into the
end of the simulation, showing acquisition of the final correct theory.

complex in their logical form. Individual runs of learning
showed discrete jumps with high variability, while average-
case behavior was smooth, with systematic order effects. Law
3 is never learned first, because alone it has no explanatory
power. Either law 1 or the combination of laws 2 and 3 tend
to be learned first, followed by the other, although sometimes
laws 1 and 2 are learned first, followed by law 3. Law 1 tends
to be learned first overall because it is most likely under the
prior (which is also the proposal distribution for local search
moves), and also because, as explained below, it represents a
reasonable first approximation to the domain’s structure.

The algorithm’s learning dynamics in this case study are
particularly interesting for how they parallel key transitions in
childrens’ cognitive development: restructuring or construc-
tion of new concepts, as when one concept differentiates into
two (Carey, 1985). When our simulations of learning about
magnetism construct law 1 first, without laws 2 and 3, they
find a simpler theory capturing many of the observed facts
at the cost of over-generalizing. That is, under law 1 alone,
the optimal setting of the core predicates – the most proba-
ble model – equates magnets and magnetic objects, making
p(X) true for both. This is a good first approximation, even
as it collapses two categories of objects with fundamentally
different causal properties: the generators of magnetic force
(the “magnets”) and the objects on which that force acts (the
“magnetic objects”). Only once all three laws have been con-
structed does the learner come to distinguish between mag-
nets and magnetic objects, reflected in the difference between
the roles played by the two core predicates p(X) and q(X).
Only once law 2 is available does the learner have reason to
restrict the extension of p(X) to just magnets, excluding other
magnetic objects.

Conclusion and Future Directions
We have presented an algorithmic model of theory acquisition
as stochastic search in a hierarchical Bayesian framework and
explored its dynamics in two case studies. We were encour-
aged by the general pattern of successes on these examples
and by several qualitative parallels with phenomena of hu-

man cognitive development. These results suggest that previ-
ous ideal learning analyses of Bayesian theory acquisition can
be realized approximately by algorithms that are cognitively
plausible for child learners, and indeed potentially descriptive
of the dynamics of development.

Previous hierarchical Bayesian analyses of learning ab-
stract knowledge have focused on the role of accumulating
data in driving changes to the learner’s hypotheses (Kemp &
Tenenbaum, 2008). In contrast, here we have focused on how
changes to the learner’s theories and abstract concepts are
driven by a different source, the stochastic dynamics of the
learning algorithm. Data-driven and algorithm-driven theory
change can have a similar character, first discovering simpler,
rougher approximations to reality and then refining those to
more complex, accurate representations; sometimes chang-
ing by adjusting small details, but other times by making
large qualitative transitions or discoveries. In future work we
plan to explore further the similarities, differences and inter-
actions between these two drivers of learning dynamics, both
in computational analyses and experimental work. We hope
to establish tighter quantitative correspondences with human
learning curves in development, as well as with controlled
laboratory studies of theory learning in adults, where some of
the same mechanisms might be at work. We will also con-
sider a broader range of algorithmic approaches, stochastic
as well as deterministic, evaluating them both as behavioral
models and as effective computational approximations to the
theory search problem for larger domains.
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